NAVAL POSTGRADUATE SCHOOL
Monterey, California

g
it

THESIS

IMPLEMENTATION OF A TACTICAL MISSION
PLANNER FOR COMMAND AND CONTROL OF
COMPUTER GENERATED FORCES IN MODSAF
by
Howard Lee Mohn

September 1994

Thesis Advisor: David R. Pratt

Approved for public release; distribution is unlimited.

AL 18

0 QUA

Form Approved

REPORT DOCUMENTATION PAGE) OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collegtion of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT ‘I;YPE AND DATES COVERED
September 1994 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Implementation of a Tactical Mission Planner for Command and Control
of Computer Generated Forces in ModSAF (U)

6. AUTHOR(S)

Mohn, Howard L.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT . . . L. 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words) .
The purpose of this work is to develop a three-level architecture for mission planning and task assignment to computer generated forces. This

architecture is based on the Rational Behavior Model, which was constructed by Byrnes, et.al. as a means of mission planning and control
for autonomous robots. Extending this concept to address the problems of mission planning for computer generated forces aliows the human
greater flexibility and capability in controlling large numbers of computer generated forces in a large-scale virtual environment.

The base system used in this proof-of-concept prototype is the Modular Semi-Automated Forces system (ModSAF), which was developed
by Loral ADS for US Army Simulation, Training, and Instrumentation Command, and written in C, using OSF/Motif as the graphical user
interface (GUI) system. A prototype mission planner was added as a library to this application, using the US Army’s five paragraph
operations order as the basis for a series of GUI editors. The editors provide information to the framework about which artificial intelligence
modules operate on the data input from the order, generating ModSAF tasks that are subsequently executed by the company. Currently, the
input is parsed directly into a series of company-level ModSAF mission tasks.

The initial results from the prototype resulted in a significant simplification of task generation for the user. One operations order phase
generated on the average 2.5 ModSAF phases, with no requirements for additional parameter changes. Further research is needed, however,
to fully determine the resource implications of including Al modules in an already complex system. The use of the operations order as a
means to generate a company-level mission simplifies mission generation, but a robust expert system is needed to effectively convert the
operations order input data to a set of ModSAF tasks.

14. SUBJECT TERMS L. . 15. NUMBER OF PAGES
Computer Generated Forces, Command and Control, Mission Planning, 139
Distributed Interactive Simulation [76. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

i Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

IMPLEMENTATION OF A TACTICAL MISSION PLANNER
FOR COMMAND AND CONTROL OF COMPUTER GENERATED

FORCES IN MODSAF
by
Howard Lee Mohn
Major, United States Army

B.S., Texas A&M University, 1980
B.S., University of Maryland, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the
NAVAL POSTGRADUATE SCHOOL

September 1994

Author:

Z

> v 4

Hov%d Lee Mohn

Approved By: / J /L / ~ W

David Pratt, Thes1s Advisor

RATE TN N

Robert McGhee, Second Reader

0o 1 e

Ted Lewis, Chairman,
Department of Computer Science

iii

ABSTRACT

The purpose of this work is to develop a three-level architecture for mission planning
and task assignment to computer generated forces. This architecture is based on the
Rational Behavior Model, which was constructed by Byrnes, et.al. as é means of mission
planning and control for autonomous robots. Extending this concept to address the
problems of mission planning for computer generated forces allows the human greater
flexibility and capability in controlling large numbers of computer generated forces in a
large-scale virtual environment.

The base system used in this proof-of-concept prototype is the Modular Semi-
Automated Forces system (ModSAF), which was developed by Loral ADS for US Army
Simulation, Training, and Instrumentation Command, and written in C, using OSF/Motif
as the graphical user interface (GUI) system. A prototype mission planner was added as a
library to this application, using the US Army’s five paragraph operations order as the basis
for a series of GUI editors. The editors provide information to the framework about which
artificial intelligence modules operate on the data input from the order, generating
ModSAF tasks that are subsequently executed by the company. Currently, the input is
parsed directly into a series of company-level ModSAF mission tasks.

The initial results from the prototype resulted in a significant simplification of task
generation for the user. One operations order phase generated on the average 2.5 ModSAF
phases, with no requirements for additional parameter changes. Further research is needed,
however, to fully determine the resource implications of including AI modules in an
already complex system. The use of the operations order as a means to generate a
company-level mission simplifies mission generation, but a robust‘ expert system is needed

to effectively convert the operations order input data to a set of ModSAF tasks.

TABLE OF CONTENTS

I. INTRODUCTION ...oooiiiiiiienirteteteeresieeestesseseessssessssssesiss s sstssesassnsesnssnssssanssnsanes 1
A. MOTIVATION ...ooooiiiieiiiereepetereseee sttt st sas b st et 1
B. PROBLEMooiiiiiteeeeenterente sttt st sbeas st as s sb s s 1
(€. SOLUTIONS ..occvevevssmreeeessssesesessssmssesesssnsessssssssssassesesssesssesssssensecsssnsnsesesssnnsnes 2
1. Define Real-Time Behavior Mechanismscccecvvevvieinicinicniniinnnicninnnennne. 2
2. Construct a Mission Planner to Simplify Mission Tasking/Assignment 3
D. FOCUS/SCOPE OF WORKccooiiiriiirriinininiteinnneicencsesessesentssesasienees 3
E. ORGANIZATIONccooiimierienininenenieteieesessnstssessesssssesssssssssesssssssssnnessesssssasenss 3
II. PREVIOUS WORKootiiiirirtiiiieccntnrcreteniesiteiesisssssae st sassnssnsssnsssessenns 5
A. RATIONAL BEHAVIOR MODELcccoerinininnriniiniiinneiniieensnsseeiessens 5
1. Strateg@ic Level ...t 5
2. TactiCal LeVelceeiieiieeeeeienceeeeee ettt sre e 6
a. Implement Subgoals Specified by the Strategic Level ... 6
b. Manage and Translate Information Between the Strategic and Execution
Levels ‘ 6
3. EXecution Level ..ot 6
B. MISSION PLANNERS ...ttt ssssesss s ssesssesasssennnes 7
C. OTHER AUTONOMOUS FORCE SYSTEMSccovinnninimininintcinescenenes 7
1. Autonomous Forces in NPSNETccccccoviniininninnininiicecieciee, 7
2. Use of Fuzzy Logic for CGF Behavior Representationcecccvvivieeenenenen. 8
D. SUMMARY .ctiiiiiriienteieeesteeerte e stesressesststeseessesssese st esaesasssessssstossesasosssssensases 8
III. MODSAF DESCRIPTIONcccectrniiiiiiiiiiniinrentiisiisressitesssesssssssssssssssssssssssensos 11
A. SYSTEM OVERVIEW ..c..ocooiiiirniereetnceienesestesessestctassssssssssssssssees 11
1. SAFstation DeSCIIPIONccccovvrivviinieinicniiniieniinrcnisne s 11
2. SAFsim DeSCIiptionccccceviviiniiiinniinieniecenienrenteseesne e snesressnsssenes 13
3. SAF Logger DesCriptionccccoviiuiimniiiicimiiicnciecieiesnitcnecssnasesenenens 13

B. PERSISTENT OBJECT DATABASE DESCRIPTION AND FUNCTIONS ... 13

vii

C. ASYNCHRONOUS AUGMENTED FINITE STATE MACHINES 15
1. System Parametersccoouvivivieiiiriiiseeieeererereeeeeeecteee s eeeeeeeesee e 15

2. Task Parameterscccoeimueirieieuieieieiesceceeeee ettt e ees e ererens 15

3. Shared Task StAtecccecvemiiiieeieeece ettt en s 15

4. L0Cal TaSK SHALEooveeeiieietiieieeeeeeeeee ettt er e 16

D. COMMAND AND CONTROL ARCHITECTUREooeoteeeeeeeeeeeeeeeeeeerann 16
Lo TASKS ettt et e e r s 17

2. TaSK FIAMES ...couiiiieieieiieeet ettt et er et et e e e e e e e e esees e s eanes 18

3. Task Frame Stacksccccoiieieiiuiiiirictceeeceeeeeeeeee ettt 19

4. Missions and Enabling TasKsccceeivviueieiirieiieieieeeeeeee e ee e, 19

5. Task MANAGETc.cccueuiiiriinirinieieieieteetete et ettt eerarenees 20

6. Task ATDITAtION ...ooveuieieirieiiieeceeect ettt e e e ee e e e eesans 21

E. TERRAIN DATABASEooottiieeeteeeeee ettt ee e e 22
1. Compact Terrain Databasecccoeieeeiimriiierererereeeceneeesseseveeeeeeeeee s 23

2. QuUAdLree Databasec.oovereeeuieieieceiee et e et ee e 23

3. Terrain Database USAZEc.cccovveueueriueriiiieiieereeeeeeeeeeee st eeeeeen e 28

Q. SAFSIALION: .eoviitiiiieieieirietee ettt e e e e e 28

D, SATSIINL oottt ettt st r e 28

F. ModSAF SOFTWARE DESIGNccocoviiriieeeeeeeeeeeeeeeeseeeses oo 29
G. SUMMARY ..ottt et e st e e 31
IV. MISSION PLANNER ARCHITECTUREcooueeereeeeeeeeeeeeeeeeeeoeeeeeeeeeeeee 33
A, OVERVIEW ..o e e 33
B. THE FIVE PARAGRAPH OPERATIONS ORDERooooveveveeeeeeeeeeee, 35
C. DATA FORMATTERoovoititetcteeeeeeeeteeeeeeee e ee e 36
D. MISSION SELECTOR/EVALUATORooouomieeeeeeeeeeeeeeeeeeeeeeeeeoeeeeee. 36
L Strate@ic LeVElc.couviiiieiiieieieieeeeeeeeeee et s s 36

2. TaCtCAl LEVELucuveiririieiicececteteteteece e e s st 37

E. ModSAF ORDERS GENERATORootiieeeeeeeeceeees e, 38
F. SUMMARY ...ttt 38

viii

V. MISSION PLANNER DESIGN STRATEGYooovviviiiiiiiinieieeesteseseee 39

A. COMMON DESIGN CONSIDERATIONSccccvmiminiiiininirinneceeeeeene, 39

1. Operations Order Graphical User Interfaceccooecmieninineniecenininniennn, 39

a. Operations Order Base EditOrcccvviiniiniiiiininiiniinircreieeecnnn 39

b. Operations Order Subordinate EdItorsooeivieiinininninineniiciininns 40

2. FUZZY SELDESIZN ...ooveeeeeecrireiriiceeeie s seseeeesesesesessssesaesrasesesenessnans 42

a. Task 1: Problem Definitionc.cccvveevericniininiininiinecneeneciveeneene 42

b. Task Two: Define Linguistic Variablescccccviviiiininniinininniennennns 43

c. Task Three: Define Fuzzy Setscccovvviviiivniiiiiiiniinniieccneceneene 45

3. Reasoning Models -- Expert System Submodulesc.cccevvvviiiniirininnne. 47

a. Terrain Reasoning Submodule ... PRRTORPR 47

b. Attack SUbmOAULEcccverieerreiiei 47

c. Defend SubmoAUIEccceeiriirnienniiiiieniinc 48

d. Move SUbmOdUIecccceeverviriiriiiirinec 48

B. DISTRIBUTED APPLICATION STRATEGY e ettt 49

C. INTEGRATED APPLICATION STRATEGYccccoviviiiniiiiininiiniciereeenenens 51

D. SUMMARY ittt ettt st ssesate s s s s sas s ssb s sas s b sas s besas b s 51

VI. MISSION PLANNER DEVELOPMENTcccccoviiinntitienininininiccenieennes 55

A. INITIAL ATTEMPT: DISTRIBUTED DESIGN STRATEGYccccevueiennens 55

B. RE-EVALUATION OF DEVELOPMENT APPROACHcccovvviiinininnnnne 59

C. SECOND ATTEMPT: INTEGRATED DESIGN STRATEGYcccccevvennees 60

1. Integration of the Mission Planner Into MOdSAFccocvvvvviniiniiniininens 60

2. Graphical User Interface Developmentcccccoevvvveniiininnicninnenienininenns 61

3. Implementation Limitationscccceereievevnienieniniiiinnininecescenccenens 61

a. Natural Language Processing Limitationsccccoevvceneennieninnneninennees 61

b. Mission SIMplifiCationcccceeverviirciennininscniinecinneceeaas 61

4. Data FOIMAETccceervveerrererereneerierenieneeneseteeseesenesesesssasesstsesstsssatessasssssesones 63

5. Mission Selector/Evaluatorccoeiiivinniinenininnnninenrcsesrsneecnens 64

6. MOASAF Orders GEneratorc.ccoeieerienienneincinisnenseonteniesesnnessesessenns 64

D. TERRAIN REASONER DEVELOPMENTcocceiininininiiinrinncnniiiiesenens 65

E. SUMMARY ..ttoirieieniectncnterenteese et st s ste s e st e e s stesses e st e st st ensesaessessnesaenneas 68
ix

A. SYSTEM PERFORMANCEcocccviiiiinieinereseeetee ettt 71

B. EXAMPLE MISSION ASSIGNMENTccoooiiiiiiiiieetececeee e 71

L. UDNIE CrEatiOn ..vivueeeicieceitee ettt ettt r ettt en et sre e 72

2. Unit SEIECHIONuiviiriiiiiieiicieteeeteee ettt et s seeeeones 72

3. Operations Order Preparationcoceeeoeveiiieiieeneeeeecceceecee e 72

4. MiSSI0N ASSIZNMEIL ..oocveiieririeetiitiiteeeeeeeese e esteseeeteereesteeeeeeeseesesseeeeeseneeas 73

C. SUMMARY ..ottt ettt ettt sttt eeeae 73
VIII. SUMMARY AND CONCLUSIONoocoiiiiictiiteteeeeeeeeeeee et eeeeens 83
A. MERITS OF THE STRATEGY ..c.ccvvtieieinteeieeetereeee et 83

B. SUGGESTED IMPROVEMENTSccccceooimnmmnnieeeeeeee e 83

C. RECOMMENDATIONS FOR FUTURE WORKc.ccooovuiiiieereeeeeeeen, 84
LIST OF REFERENCESccviriitiitireeeeeecetet ettt s st ee e 85
APPENDIX A. OPERATIONS ORDER DESCRIPTION AND EXAMPLE 89
A. OPERATIONS ORDERccoovtiiiirieiereretetnieieeeeeie ettt eeeeseaseseseesesseneans 89

1. Paragraph One: SItUAtionccoceeveeiereueieeererceeee et 89

A, Enemy FOICESooeiiniriiiieieieceeee e 89

b. Friendly FOICEScoivirimiiiiiiieieeteeceeee ettt neeana 89

2. Paragraph Two: MiSSION ...cocvoieioiiieieieieieeeeeteeeeeeec et eeeee e, 90

3. Paragraph Three: EXECUtiONcoecioieieueeieeeiericccececcee e 90

a. Commander’s INTENcoeoiiiinirieietieieiteeeee e 90

b. Concept Of the OPETationcceuiecurerieeeeieeeeiieeereseeeeeeeeeeseeeeeeesesesssens 90

c. Instructions to Subordinate URitscceeeriieeieieciiireneeeeeeeeesesesesesenenns 91

d. Coordinating INStIUCHONSc.eovevereeerererercrireececeeeee e ee e, 91

e. Execution Paragraph SUMMAaryccccccccoveeeieiiniieciicieee e 91

4. Paragraph Four: Service SUPPOTtccocoveveveviuimieieeeeeeeeeeeeeeeeeeees v 91

5. Paragraph Five: Command and Signalcocoooeoueeeeeeeeeeeeesressessennn, 92

B. THE OPERATIONS/INTELLIGENCE OVERLAYcooveeteteeeeeeeeeeeeerrnns 92
APPENDIX B. FUZZY SET MEMBERSHIPccoovviiimemeeeeneeeeeeeeeeeseeeesess s 95

APPENDIX C. MISSION PLANNER USER’S GUIDEcccccoovniiiiiiniiiiecnennen, 101

A. UNIT SELECTION/OPORD SELECTIONccccooinmiiniiiininiiniciesnenniennenes 101

B. OPERATIONS ORDER BASE EDITORccccoivininiiiirerieicicniecnins 101

1. Editor Control BULtONSccccevivierreniniiininicnineeis s 101

2. Unit Organization ChArtcceccevinieiiniiiiiniiieciceeneecreve e 102

3. Paragraph Selectionsc.ccevmiviiiiiinicncninic s 102

a. Paragraph One -- Situationc.cccccevveeerniencnceiirenneeneneeeeeeeeceeenes 102

b. Paragraph TWO - MISSIONccceeiveeiniiniiiniinictccnientceceeecteenne 102

c. Paragraph Four -- Service Supportccccoovvnninnninnnennncecnns 102

d. Paragraph Five -- Command and Signalccccccvvenniiiiniinniincnnns 103

4. Paragraph Three - EXECULIONccocveviviiiininiiniiiiiiicncieicccnns 103

A ALLACK e st 103

D, Defend ... 103

C. MOVE ottt 103

d. Occupy ASSembIY ATEacccocveviriireriiiniiiiincnis s 104

e. Control Measure Transitionc..cecveercreiineeicrirersecninocrsnesessesssensnes 104

APPENDIX D. MISSION PLANNER PROGRAMMER'’S GUIDEc.ccccovveun. 115

A, OVERVIEW ..ottt ettt sttt eeese e e enessssss s snis 115

B. USAGE ...ttt s 115

C. FUNCTIONSooiiiiiiiirctntitnisnc st sstesesscsse st ss e st be s st 115

5. OPOTA_INIL w.oovieviiriieniiiinirenireiectcst ettt ere s e e sare s 116

6. opord_create_editor Hersesteetesetttiesrariabartrtetttteisasaaabrtrrrraessesesoasantenns 116

7. OPOTA_SEL_UMIL ..cormiiiniiiiiiiiieiiieniessee sttt st st s saeeesas s sasesaseesanaons 117

8. OPOTA_SIALE ...eoeveiirieieiecrirennent et sttt se et e e e s e sr et s e s ese e sen e e e see et s 118

INITIAL DISTRIBUTION LISTccooviiiiiiiiiiniintiiininincntencnenesscsnessssssssssssessesns 119
xi

xii

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.

LIST OF FIGURES

ModSAF Architecture, after Ref. [LORADI3] ..oueeriiiiiiieeiee e ccerrreeeer e 12
Tasks and Arbitration, after Ref. [CERO92]uvvveeeciiiiieceieeecetee et 22
Compact Terrain Database Format, from Ref. [STANO3]ccccovviriiivinininnenene 24
Quadtree Data Structure Representation from Ref. [LORADI3]cccoceeueeeee .27
Mission Planner Architecture e 34
Data FIOW OVEIVIEWoouviviiiiiiiiiriiiicciictieitceecne sttt sinesenenes 35
Preliminary Design -- Base Operations Order Editorccccoceeeeccrvienenvcrnienen. 40
Operations Order Subeditors -- Paragraphs One, Two, Four, and Five 41
Inputs and Outputs of Mission Plannercccccvivivieinienniiinninincincnineinnennnnn, 44
Distributed Design -- Mission Planner Separate From ModSAF 50
Integrated Design -- Mission Planner Part of ModSAF .. 52
LibOpord GUI Widget TTEEcceeevurereerrireiireeeieeie sttt neeseese et eses e e seeeeas 62
Compartmentalized Data StIUCIUIEeovvierierierrirreeeententese st ee st esaeeaeens 63
Terrain Analysis StEPSccccceveriierercerrerierereecereeerescreseeseeeenens SRR 66
Terrain Analysis Object HIErarChyccevevecriuereeeeeeeseesesesscsessessssesensesnnsns orn. 68
MOASAF Units Creation BAIOrcceeeeeereeessesesssesssssssssssssssssessssssssssssssssssssssssanes 75
Unit Operations Editor -- Initial VIEWcccoeveviniirninnieninirrceeseeeeeeneseene 76
Operations Order Editor -- Initial VIEWc.cccceevirieiiriiniiineceninieeseeeeceeeeene e 77
Paragraph Two: Mission SUDEditorcccccecevecrnirienrenenininiineeeceseeee e seesesenneas 78
Sample Printed Operations Ordercocccvvevveeierernrnrerenenenceenesesieeeseessesessessenens 79
Completed Operations Order Base EItOrcoccoevineniirinieneceseersceseeeseeenn, 80

Unit Operations Editor Reflecting Assigned MiSSioncccceveeveveereeeereeeeveneenns 81

A-1. Example Comparison and Definition of Two Graphic Control Symbols, After

[ARMY85] 93
B-1. Fuzzy Sets on Enemy FOICESc.cccooiirtiirenirinieieieesesee et 96
B-2. Fuzzy Sets on Intelligence ACCUIACYccccoereveriereriresreteeeeereese e, 96
B-3. Fuzzy Sets on Troops Availablecccooeoiiviiineinieeeieeeceeeeee e 97
B-4. Fuzzy Sets on Time Availablecocoeivoivviieninnicenneieseeee e 97
B-5. Fuzzy Sets on Terrain SIOPEcccoceceirriiririnieceeieeeeeeeereeeeee s 98
B-6. Fuzzy Sets on Terrain SOil TYPE ...ocvcvvvrreeieieietieeeeeieeeeececeee et eee e 98
B-7. Fuzzy Sets on Terrain Vegetationcccevveeeeiniesieeiieeeeieeeeee e e eeeeseeenaa 99
B-8. Fuzzy Sets on Terrain ODSLACIES ...c.eevvurveeeeiiereieecerereceeeeeceeeee et 99
B-9. Fuzzy Sets on Terrain Trafficabilitycccoceveeieveriieiiieeeeeceeeeeeee e, 100
B-10. Fuzzy Sets on Success Predictionccceveveveeieeeeeee et een, 100
C-1. Unit Operations EQItOrcocoeueueiiuiieiceeececeeecteeee e 105
C-2. Operations Order Base EdItOrcocuoieviieriieiiiiieeeeee et eeeeeeseeressensnens 106
C-3. Paragraph One - STUAHOMNc.oveveuvieuereeieiieieieee ettt e e, 107
C-4. Paragraph TWO - MISSION ..cccecevivunritiiieienicetet et ee st en e 108
C-5. Paragraph Four -- SErvice SUPPOTtccoveveeemeveveeitireeieeeieete e eeeeeeeeeeeseresaees e, 109
C-6. Paragraph Five -- Command and Signalcccocooueuiueeeeeeeeeeeeeeeeeeees e 110
C-7. Attack MisSion EditOrcoeueeruriieiiiicieieeeeteeeeee et ee s 111
C-8. Defend Mission EitOrc.cociemueiiiieieiceeteeceeceeee e eeeeee e es s 112
C-9. Move (Road March) Mission EQItOrc.coeveeeeeeeoeeereeeeeeeeeeeeoeeeeeee e, 113
C-10. Assembly Area Mission EdItOrcoooovevveveeeieeeeeeeeeeeeeeeeeeee oo, 114

Xiv

B-1.

LIST OF TABLES

Persistent Objects, from Ref. [SMITHa93]ccccovvimniiiiiinniininiiceeerecee 14
Compact Terrain Database Features, from Ref. [STANO93] ..., 24
Quadtree Feature Attributes, from Ref. [STANO3]cccceevvviimiininiiiciiinns 25
Terrain Representation in the ModSAF Databases from Ref. [CER92] 30
Tasks Required to Build a Fuzzy Expert System, After [DURK94] 43
Linguistic Variables and Their Ranges ... 44
Linguistic Variables and their Modifying Adjectivescoevenineivinnrenenennnenee. 46
Library Modifications to ModSAF for C++ Implementationccccceevevveneenenen. 56

Linguistic Variables and their Modifying Adjectivesccocevvevieiiniininnnincnnnene. 95

Xvi

ACKNOWLEDGMENT

Numerous individuals provided me invaluable assistance to conduct this research.
First, I wish to thank Professor David Pratt and Professor Robert McGhee for providing me
the guidance and inspiration to study autonomous force development topics. Second, I
wish to thank Joshua Smith for his assistance in helping me to understand the ModSAF
source code. He also modified one of the ModSAF libraries to support my research, and
patiently answered every one of my many questions. I received additional help and
guidance from Dr. Andy Ceranowicz, Marnie Salisbury, Dr. Se-Hung Kwak, Anthony
Courtemanche, and Thomas Stanzione. To these individuals, and the others with whom I
discussed my ideas, I owe a debt of thanks.

Finally, I wish to thank my wife, Lisa, and our five children: Shibahn, Gweneth,
Sarah, Karl, and Alec, for their support and patience during the last two years. Their love

provided me the motivation to complete this work.

xvil

Xviit

I. INTRODUCTION

A. MOTIVATION

The United States Army, as well as the other branches of the armed forces, has com-
mitted itself to the development of virtual world technologies and distributed interactive
simulation (DIS) as a means to effectively and economically train their forces. The use of
DIS could mean that units would no longer be required to travel to training areas as often
as they do now, and would reduce the wear and tear on military equipment, not to mention
the reduced effects of environmental damage. Individual soldiers, crew members, and unit
leaders would all benefit from real-time, realistic environments, allowing them to practice
much more frequently their essential combat skills. Today, DIS has proven itself effective
in networking small numbers of simulators to train platoon-sized (four vehicles) elements
and individual vehicle crew members.

The Army’s vision is to have the ability to run large-scale, virtual simulations with
many thousands of entities by the end of the 20th Century. To accomplish this feat, the
number of available simulators must grow dramatically in the next few years. The total
number of manned simulators in a virtual battlefield, however, would be far less than the
number of computer-generated entities, because the cost of constructing and manning indi-
vidual simulators is significantly more expensive. For training to be effective and realistic,
these computer-generated forces (CGF) must be endowed with an awareness of their envi-
ronment, their capabilities, and a fundamental set of behaviors that would allow them to
realistically portray a vehicle or entity on the battlefield. In the best case, CGF and manned

simulator entities should be indistinguishable [PETTY94].

B. PROBLEM
If one is to use CGF effectively, then an economy of human interaction is needed. The
use of CGF today is somewhat limited because of the inherent complexity in modelling the

behaviors of a realistic force. As a result, most CGF applications are limited to the repre-

sentation of individual vehicle/person behaviors. In this approach, the human SAF control-
ler is responsible for the unit-level behaviors and the inter-vehicle interactions and coordi-
nations.

Other CGF applications model low-level unit behaviors and tasks, but cannot perform
mission analysis and planning. In addition, these applications require the human SAF con-
troller to closely monitor the scenario actions, and be prepared to make timely decisions to
directly intervene in the simulation process. Failure to intervene usually results in nonre-
alistic behaviors at the unit (aggregate) level.

One of the latest examples of this type computer generated force applications is the
Modular Semi-Automated Forces system (ModSAF), developed by Loral Advanced Dis-
tributed Simulation [DMSO93]. While it represents “state of the art,” it has shortcomings
in the requirement for the human operator to constantly intervene to “correct” inappropriate
CGF behavior. In particular, each entity up to and including platoon level must be given
highly detailed sets of mission tasks for it to represent a minimally acceptable level of com-
petence. In many cases, elements of a platoon must be given separate instructions, as is the

case with a mounted section and a dismounted section of a mechanized infantry platoon.

C. SOLUTIONS

There are several improvements that can be made to existing SAF systems. However,
the fact that they are not yet in existence is proof that such an undertaking is not trivial.

These include;

1. Define Real-Time Behavior Mechanisms

The definition of real-time behavior mechanisms to exercise real-time coordina-
tion among related entities would require aggregation in some manner of the individual ve-
hicle/soldier behavioral actions, and an increase in the “awareness” of each individual com-
puter generated force element of their respective mission relative to each other. Addition-
ally, a means of cooperative communication among different CGF entities would be

required.

2. Construct a Mission Planner to Simplify Mission Tasking/Assignment
This is the subject of this work. A mission planner would assist the user by ab-
stracting the individual vehicle/platoon level tasks, allowing the user to assign tasks at a
higher level. The mission planner is a first step towards the development, testing, and im-
plementation of an artificial intelligence system that controls lower level behaviors, while

the human is freed to concentrate on the aggregate behaviors.

D. FOCUS/SCOPE OF WORK

The focus of this work is to develop a proof-of concept prototype of a company-level
command and control mission planner. This initial work lays the foundation for the incor-
poration of artificial intelligence languages to simulate a company commander’s mission
analysis and course of action development.

This mission planner is written for the ModSAF semi-automated forces system. The
initial design considerations attempted to make the mission planner as loosely-coupled
with ModSAF as possible; this was not possible given the inherent complexity of ModSAF
and the emphasis on the reuse of existing ModSAF libraries and modules in the construc-
tion of the mission planner application.

The mission planner allows the user to enter a modified battalion-level five paragraph
field order. The input data would be used by the various modules within the mission plan-
ner to determine the most effective course of action by the company to accomplish the bat-
talion’s mission. Its output consists of a set of ModSAF mission task frames that executes

the order.

E. ORGANIZATION

A discussion of previous work related to this problem is discussed in Chapter II. It
includes a relatively detailed discussion of the Rational Behavior Model and its application
in autonomous robots. Current and recent research on automated mission planning is also

presented.

A summary of the ModSAF architecture and design is presented in Chapter III. The
information includes the essential concepts required to understand the role of the Mission
Planner within the ModSAF system, and provides the contextual background for the re-
maining chapters.

The architecture of the Mission Planner is presented in Chapter IV. The major com-
ponents of the Mission Planner are discussed, along with their relationship to each other.
This provides an overview of the information flow within the Mission Planner.

Design strategies are discussed in Chapter V. Two basic design strategies are present-
ed, along with their advantages and disadvantages. Design considerations that are common
to both strategies are identified and presented.

The development of the Mission Planner is presented in Chapter VI. Both design
strategies were attempted; the problems encountered for each strategy are discussed, along
with observed solutions.

The results of the Mission Planner development are discussed in Chapter VII. One of
the design strategies presented in Chapter VI proved to be unfeasible due to time restric-
tions; reasons and recommendations are discussed. These restrictions on available time
prevented full implementation of a fully operational prototype system, therefore, the final
proof-of-concept prototype is discussed.

Chapter VIII includes a discussion of the merits of the strategy of the overall approach,
and recommendations for future research. Suggested improvements are included. The ap-
pendices provide additional information, to include a user’s guide and a programmer’s
manual. These are meant to supplement, not replace, the ModSAF User’s Guide and pro-

gramming documentation.

II. PREVIOUS WORK

The development of a meta-level mission planning application for command and con-
trol of computer generated forces is a relatively new area of study. As a result, the body of
available literature that directly addresses this topic is sparse. As a result, background in-
formation in three subject areas that had an impact in the development of this CGF mission
planner are presented. They are: a) The Rational Behavior Model, b) automated mission

planning, and c¢) autonomous force collaborative reasoning and belief systems.

A. RATIONAL BEHAVIOR MODEL

The Rational Behavior Model is a three-level software architecture proposed for use
in autonomous robots [BYRNO3]. It proposes a separation of the software control modules
into three, separate, and functionally different areas. This allows for an efficient means to
link high level symbolic computations to low level control software. The three levels are

called the Strategic, the Tactical, and the Execution levels of abstraction.

1. Strategic Level

The highest level of abstraction is the Strategic Level. This level allows the user
access to an effective means of expressing a mission to the vehicle. As such, it contains
high-level logic that is required to control a robotic platform and the mission it is to per-
form. This level consists of a top-down, goal driven approach to the mission, which lends
itself in implementation to a symbolic, asynchronous, discrete (Boolean) domain. Byrnes,
et.al. recommended the use of Prolog as a specification language, with a form of conversion
to another symbolic language (such as Lisp), or to a procedural language such as C or C++
[BYRNO3].

When implemented in Prolog, mission execution can be specified in the form of
a depth-first search of a dynamic AND/OR graph. Thus, goals are reached when the sub-
goals that comprise those goals are reached. This recursive decomposition of the goal state

into its constituent subgoals is consistent with high level human mission planning.

2. Tactical Level
This level performs the required interface between the symbolic, abstract, knowl-
edge-based Strategic Level and the individual robotic control subsystems of the Tactical
Level. Byrnes, et.al. implemented this level in an object-oriented language as a set of ob-
jects and the methods that operate on those objects. The tactical level performs two func-

tions:

a. Implement Subgoals Specified by the Strategic Level
The Tactical Level responds to the Strategic Level by implementing a set of
.specified subgoals. By nature, these subgoals are data-driven, forward chaining search
spaces. Thus, the tactical level implements a set of “drills” that are essentially iterative in

nature by determining which discrete events to execute over continuous time.

b. Manage and Translate Information Between the Strategic and Execution

Levels
Since the Strategic Level operates in a discrete space independently of time,
the Tactical Level must have the capability to react to the commands and information from
the Strategic Level at any time. On the other hand, the execution level communicates with
the Tactical level on a timed interrupt basis. Thus, the Tactical Level monitors the status
of the subgoals specified by the Strategic Level, and reports their status based on feedback

from the Execution Level.

3. Execution Level
This level controls the actual motors, sensors, and control surfaces in a robot. It
responds to particular commands from the Tactical Level and reports the status of the com-
mand through interrupts to the Tactical Level. As implemented in the NPS Autonomous
Underwater Vehicle [BYRN93], this level consists of the set of functions that provides

electrical control and feedback to the control surfaces.

B. MISSION PLANNERS

While much work has been done on automated mission planners, the applicability of
these planners to command and control of computer generated forces are still in the con-
cept/prototype stages. Most of the existing planners for military use are abstracted to a
much higher level than required for intermediate to low level command and control.

An example of such a planner is Eagle-AP, developed by Mitre C’orporation
[SALI93]. This planner requires a significant amount of data preprocessing, and is best
suited for development of a brigade and division level command and control system, for
which it was designed. Eagle-AP is a state-based search planner, using the concept of ad-
versarial planning to form counter-options to the anticipated moves of the antagonist.

Other proposed systems include the use of simulation to conduct mission planning,
and the use of an Artificial Intelligence blackboard to serve as a central repository for Com-

mand and Control-related messages [LEE94][BRAU93].

C. OTHER AUTONOMOUS FORCE SYSTEMS

Autonomous forces and computer-generated force systems have been in existence for
some time. Examples of some mature, yet active, systems include Janus-A, the Simulated
Warfare Environment Generator (SWEG), and Battalion/Brigade Battle Simulation/Dis-
tributed Interactive Simulation (BBS/DIS) [DMSO093]. Some of these systems, such as Ja-
nus-A, are undergoing modification to allow them to interact in a Distributed Interactive

Simulation (DIS) environment, while others are fully DIS-compliant.

1. Autonomous Forces in NPSNET
A three-level system of collaborative intelligent CGF agents was proposed by
Pratt, et. al. [PRATT94]. In this system, autonomous force consists of three basic elements:
an observer, a decision-maker, and an execution agent. The decision-making module is
further broken-down into three distinct levels of responsibility: individual, crew, and unit.
The individual level models the immediate actions required to complete an assigned task.

It also is the level at which the overall decision-making module interfaces with the execu-

tion agent. The crew level models the actions required by a vehicle crew, in this case, an
MIALI tank. This level can be best described as a collaborative effort, in which vehicle
tasks such as movement, turret traversal, and target acquisition are all determined by the
crew commander. Finally, the unit level models the actions of a unit leader in coordinating
the assets available to best accomplish the mission. There are as many unit level modules
as there are units in the hierarchy. This is the level where mission planning, unit task se-
lection, and timing of actions occur. The advantage of this concept is that meta-level rea-
soning can be employed at the crew and unit levels of decision making. Actions selected
by the higher level unit are transmitted to the lower level unit/crew in the form of tasks/
directives that the lower level unit incorporates into its reasoning system. Thus a coherent

form of hierarchical command and control can be developed.

2. Use of Fuzzy Logic for CGF Behavior Representation

Fuzzy logic has been proposed as a decision-making system for high-level com-
mand objects in the Maneuver-Warfare Analytical and Research System currently under
development for the US Marine Corps [PARS94]. This decision-making model would im-
itate a brigade-level commander and higher, focusing on the key relationships between a
real-life commander and his supporting staff. All reports (input) are “fuzzified,” and the
commander makes decisions based on the values in the fuzzy sets. The final decision is
computed by finding the centroid value through the process of ‘“defuzzification”
[DURK94]. The advantages of the use of fuzzy logic in military decision making include
expressing the situation in terms of linguistic variables, making fuzzy rules easier to under-
stand, and the fact that most battlefield information is by nature a fuzzy value (“fog of

war’).

D. SUMMARY

Mission planning for computer generated forces is an evolving field of research. Pro-
totypes have been constructed at the battalion level and higher; the recent developments in

lower echelon modeling and simulation are generating a need for the capability of these

agents to plan and coordinate with each other as well as react to changes in their environ-
ment. The Rational Behavior Model is a method of high-level control of autonomous ro-
bots; its principles could be applied to command and control of computer generated forces
as well. In the next chapter, a fairly detailed overview of the Modular Semi-Automated
Forces system is discussed. This will provide the contextual framework around which the

Mission Planner is integrated.

10

III. MODSAF DESCRIPTION

The Modular Semi-Automated Forces (ModSAF) system is a set of software modules
that replicate the presence of simulated vehicles and their associated equipment in a Dis-
tributed Interactive Simulation (DIS) environment [LORAL94]. The follewing is a brief

overview of the system; the ModSAF architecture is described in detail in [LORAa93].

A. SYSTEM OVERVIEW

ModSAF consists of three basic application programs: the SAFstation, the SAFsim,
and the SAF Logger. These programs interact with each other on a network by sharing a
common database -- the Persistent Object Database [LORAa93]. These programs com-
municate with each other through two different network protocols: the DIS (or SIMNET)
protocols, and the internal Persistent Object (PO) Protocols. For small simulations and test-
ing purposes, the SAFsim and SAFstation can be run on the same workstation, without the
requirements of the network protocols.

A ModSAF Suite can be run in any combination of SAFstations, SAFsims and Log-
gers. As a general rule, fairly large simulations will require the use of one SAFstation, and
several SAFsims, with an optional Logger, as shown in Figure 1. The ModSAF Suite at
the Naval Postgraduate School consists of five Silicon Graphics Iris Indigo XS 4000 work-
stations, with a MIPS R4000 processor, 80 Megabytes of Random Access Memory, and a
1.2 Gigabyte hard drive [SILIC92].

1. SAFstation Description
The SAFstation consists of the graphical user interface that allows a human op-
erator to generate and interact with the computer generated forces. It consists of a map dis-
play and a series of editors and tools to facilitate construction of mission scenarios and also

serves as a means for entering commands to the system. Thus, the SAFstation is the means

11

to set up and control simulation exercises, in addition to modifying the missions and behav-

ior of existing computer-generated forces.

SAFsim Features
* Local Entity
Simulation of
Vehicles and Units

SAFstation
SAFsim * May have more than
one SAFsim in
SAFstation Features operation

* Electronic Map
* Plan View Display :
Logger Features

* Simulation Control » Logs all network

* Mission Specifications traffic (DIS PDUs
* Task Organization Logger and PO PDUs) to
* Monitor own Forces \ allow for replay/
restart of simulation
SAFstation (Ethernet) in time

Figure 1: ModSAF Architecture, after Ref. [LORADb93]

The SAFstation features a graphical user interface consisting of a 2-dimensional

map display1 and a series of tool buttons to allow the user to examine the terrain, monitor
the tactical situation, and prepare orders. A message log records commands issued and the
reports flowing back. The SAFstation performs no simulation; it issues requests for action
to the SAFsims through messages and orders, making heavy use of the PO database. The
purpose of separating the orders and Command and Control (C2) functions from the simu-
lation functions is to facilitate the substitution of other types of SAFstations, such as an ar-
tificial intelligence overlay, and to allow the SAFstation to run on different platforms.

[CERbY94][LORALY4]

1. Also called the Plan View Display (PVD)

12

2. SAFsim Description
The SAFsim is the simulation engine of the ModSAF suite. As such, it simulates
both collective and individual behaviors, in addition to the interactions of the CGF to each

other.

3. SAF Logger Description
The SAF Logger provides a means to record and play back simulation exercises
conducted on the virtual battlefield. The logger records both computer generated and
manned simulator entities. It also can record the command and control information that
flows between the other SAF subsystems. As such it could provide a more detailed analysis

of SAF behavior during construction of new tasks and missions. [LORAa93]

B. PERSISTENT OBJECT DATABASE DESCRIPTION AND FUNCTIONS
A critical element of the ModS AF system is the Persistent Object (PO) Database. This

unique approach to the critical task of state information management for multiple entities
was dictated by the distributed nature of the system, and the need for all elements of the
system to have universal access to that information. [CALD93][CERb94][CER92]

The sharing of vehicle appearance data among subsystems is accomplished through
the DIS protocol. However, there is a great deal of command and control data which cannot
be shared using the DIS protocol. The sharing of C2 data in ModSAF is accomplished
through the Persistent Object protocol. This protocol defines the classes of objects which
can be shared between simulations running on separate hardware platforms. Software func-
tions are included to allow simultaneous editing of objects, and to ensure persistence of ob-
jects despite hardware failures. The C2 data is used to update the PO database contents to
reflect the current state of the simulation. [CALD93]

Persistent Object Protocol is similar to the DIS protocol in that it is broadcast through
the network for all ModSAF stations. It has seven basic protocol data units to handle the
C2 data transfer: Simulator Present, Object Present, Delete Objects, Nomination, Describe

Object, Object Request, and Set World State. The PDUs can perform load balancing among

13

more than one SAFsim station, and handle the migration of vehicle task controls between

hosts. [CALD93]

As its name implies, the Persistent Object database is object-oriented. Table 1 pro-

vides a list of persistent objects and their definitions:

Name

Definition

Control Measure

Point, line, area or route

Unit

Entity or unit

Task

Individual behavior. Examples include moving object colli-
sion avoidance, platoon bounding overwatch

Task Frames

Collections of tasks which execute in parallel and form a
component of a mission

Task Frame Stack | Collection of task frames which a unit is currently executing.
Only one task frame is active at a time

Missions Represented by a network of task frames

Overlays Organize persistent objects representing orders of battle,
intelligence information, missions

H-Hour Used to synchronize mission execution by different units

Table 1: Persistent Objects, from Ref. [SMITHa93]

The PO database is replicated on all SAFstations and SAFsims running the same sim-

ulation. Modifications to the PO database require a near-simultaneous update by all work-

stations. This is accomplished through a two-step update process. Both SAFstations and

SAFsims modify the database contents as the situation warrants. However, they do not re-

act to the modification until the change is returned via an event. Thus, the event is broadcast

to all ModSAF elements in a manner similar to DIS broadcasting. The event signals all

SAFstations and SAFsims that a change has occurred to the PO database, thus ensuring that

all stations receive the change at the same time. [CER92][SMITHa93]

14

C. ASYNCHRONOUS AUGMENTED FINITE STATE MACHINES

The software implementation of a task is through a finite state machine. The task is
thus represented as a series of actions to take given a set of inputs. In this case, ModSAF
uses an Asynchronous Augmented Finite State Machine (AAFSM) to represent a particular
task. The state machine is asynchronous because it may generate outputs in response to
events in the simulated environment, not based on a time function. It is augmented because
it can influence and use many variables other than its own state variable [CER92]. The
AAFSM and the data structures it operates on are called a task model.

A task model interacts with four separate data structures. Some of these are shared and
exist in the PO database where any ModSAF subsystem can examine and manipulate them.
Others are local, meaning they are only available to the simulation process that is modelling
the vehicle performing the task. The data structures can be either public or private. The four

data structures are:

1. System Parameters
These are shared, public parameters which control how a task performs its job.
These parameters are set for each vehicle platform type to specifically guide the execution
of the general task in a manner appropriate to that platform. (i.e. tanks do not fly, etc.) These
parameters are also used to tune execution, and to allow modification through the PO data-

base. [CALD93]

2. Task Parameters

These are shared, public parameters which control the execution of a task in the
context of a single mission. These include mission parameters such as which route to fol-

low, and rules of engagement. [CALD93]

3. Shared Task State

This is a shared, private state of an executing task. It includes the AAFSM state

machine variable and any other specific state information which needs to be shared for use

15

by other programs executing in the ModSAF system. This state should not change very fre-

quently, as each state change causes additional network traffic. [CALD93]

4. Local Task State

This is a local, private state of an executing task. It usually contains more detailed
information than the shared task state, and will represent the same information in the shared
task state in a more efficient manner. This state may change frequently without any network
overhead, but this updated information is not available to any other programs in the Mod-

SAF system. [CALD93]

D. COMMAND AND CONTROL ARCHITECTURE

ModSAF uses a hierarchy of tasks, task frames, and a frame stack for each unit/entity
to simulate that unit’s behavior in the virtual world. The developer’s stated objectives in
this area are:

* to support complex missions, including preplanned contingencies and task

reorganization,

* toissue a fragmentary order (FRAGO), which interrupts and immediately changes the
current mission,

* to override choices made by the simulated units at run time,
* to provide a succinct method of representing missions,

* to provide a general representation for unit and individual behavior within the
architecture without mandating a specific approach to behavioral representation,

* to provide a method for representing battlefield uncertainty,

* to provide a user interface which is constructed automatically from the software
definitions of available missions,

* to provide the ability to record command and control information and then
subsequently restart from any point in the recorded exercise,

* to provide a structure which allows the user interface software to explain unit and
individual behavior to the user, and

* to provide a software architecture which allows new behaviors to be encoded in any
language -- language independence. [CALD93]

16

1. Tasks

The basic building block of the ModSAF command and control architecture is
the task. There are five types of tasks in the ModSAF system: unit tasks, individual vehicle
tasks, reactive tasks, enabling tasks, and arbitration tasks. A task is represented in the PO
database by a unique task model number, the task parameters, and the task state. All tasks
except the arbitration task are represented as an AAFSM. [CALD93][CER92]

Unit tasks mode] behaviors which are performed at a unit level. In this case, a
“unit” is any military organization larger than individual vehicle, and smaller than a battal-
ion (i.e. platoon and company). These tasks will create, delete, and monitor the progress of
lower-level tasks for subordinate units and vehicles. The hierarchical manner of military
organizations and decision making is thus preserved. Examples of unit tasks are Company
Road March, Platoon Bounding Overwatch, and Company Attack. [CALD93]

Individual vehicle tasks model behaviors that an individual vehicle would typi-
cally execute. These tasks will control and process information from the physical sub-
systems of the vehicle (e.g. weapons status, turret direction, etc.). Examples of individual
vehicle tasks are Follow Route, Keep Formation, Avoid Collisions, and Spot Enemy Vehi-
cles. [CALD93]

Reactive tasks are used to trigger reactions to events in the virtual battlefield
which may be encountered by a unit or a vehicle. These tasks are pre-defined by the Mod-
SAF system and stored as data files. At run-time, the user can enable and disable them, or
modify the parameters to meet the requirements of a particular mission. Examples of reac-
tive tasks are Air Raid Happening, Target Meets Commit Criteria, and Hasty Attack Need-
ed. [CALD93]

Enabling tasks model behaviors which will trigger mission contingencies. They
are defined by the user during the construction of a mission, and allow the user to specify
alternative actions for a unit to take in response to conditions or events which the user pre-
dicts may occur during the mission. Examples of enabling tasks are Crossed Phase Line,

Detected Enemy Unit, and Reached H-Hour Time. [CALD93]

17

Arbitration tasks are a special class of tasks which take a set of multiple, compet-
ing recommendations from tasks and form a single recommendation. These recommenda-
tions may be at any level of the hierarchy from individual vehicle through unit (company
and higher). Examples of arbitration tasks are Vehicle Movement Arbitration, Vehicle Sen-

sor Arbitration, and Vehicle Targeting Arbitration. [CALD93]

2. Task Frames

Task frames are used to group a collection of related tasks which run in parallel.
Each task frame represents a mission phase, such as Occupy Assembly Area, Road March,
or Attack. Task frames are defined in a data file by a set of task names and the task param-
eters associated with each of those tasks. Some of the parameters can be modified by the
user, allowing the task frame to be customized for a particular mission. [CALD93]

Task frames can either be constructed by the user or generated internally by the
simulation software as it executes. At thé beginning of the simulation, the user will gener-
ally specify one or more task frames to construct a mission for a particular vehicle or unit.
The simulation software will construct its own task frames in order to simulate the down-
ward flow and refinement of commands, or to respond to certain events on the virtual bat-
tlefield. [CALD93][CER92]

Task frames also support the hierarchical structure of military organizations in
that they can be defined for both individual vehicles and units. To do this, a ModSAF ve-
hicle must be able to perform multiple “roles” in the unit hierarchy (This is congruent to
actual military practice, where a tank platoon leader is also the commander of his individual
tank). Therefore, a single vehicle can have multiple task frames -- some to perform unit lev-
el missions, and others to perform the individual vehicle behaviors.

Unit task frames are congruent to unit tasks -- they model the activities which a
unit leader performs on the battlefield. They are composed of unit tasks, and may add, mod-
ify, and delete tasks and task frames in subordinate units and vehicles to control their be-

havior.

18

Individual task frames are defined to model the activities which a single vehicle
performs on the battlefield. They are composed of individual vehicle tasks which perform
such functions as moving, shooting, target acquisition, etc. Each vehicle has at least one

task frame where its tasks reside. [CALD93][CER92]

3. Task Frame Stacks

There can occur situations in any battle, simulated or otherwise, when a mission
is temporarily suspended to react to a more critical event -- one which would prevent mis-
sion success, Or one which exploits a particular enemy vulnerability. This is modelled in
ModSAF by the implementation of task frame stacks.

Rather than execute a single task frame, ModSAF units execute a stack of task
frames. The topmost frames are currently active; the rest are suspended. New task frames
may be pushed on the stack as the result of a reactive task, or at the direction of the user to
perform some immediate action. When a task frame has been completed, it may be popped
off the stack to resume a previous activity, or a new task frame may be pushed on the stack
to initiate a new activity. [CALD93][CER92]

Each task frame in the stack is marked as transparent or opaque. If the topmost
task frame is transparent, then its tasks are merged with the tasks of the topmost opaque
frame. Multiple transparent frames may be layered in this manner to avoid unnecessary du-
plication of unaffected tasks in the top frames. Thus, minor modifications to the mission
and mission overrides can be efficiently handled through the placement of traﬁsparent task
frames on the task frame stack. These transparent frames will contain only the tasks that are
affected by the modifications. When the mission is to be resumed, these transparent task

frames are simply removed from the task frame stack. [CALD93}{CER92]

4. Missions and Enabling Tasks

A mission is a collection of task frames which are linked together to form a se-
quence of operations. In a simple mission, each task frame specifies one task in the previous

task frame which must end before the subsequent task frame starts. For example, if a unit

19

should perform a road march along Route A to Release Point P, and then attack along Axis
B, then the attack task frame will not start until the road march task frame ends. The road
march task frame signals its completion when the unit arrives at Release Point P.
[CALD93]

In more complex missions, the task frames are linked together by enabling tasks
in addition to the completion of executing tasks. Enabling tasks are constructed to execute
based on certain conditions occurring, such as the spotting of a particular type of enemy
unit in a particular location. The enabling tasks link together the task frames which make

up the various contingencies of a mission, as defined by the user. [CALD93]

5. Task Manager

The task manager is a portion of the command and control database software that
determines the outcome of the recommendations from the task AAFSM operations. As
such, it is responsible for the overall implementation of the C2 architecture. When Mod-
SAF is started, each task model registers itself with the task manager. Each model specifies
the task model number, the entry points for the task functions which the task manager may
need to invoke, the task shared-data size, and a list of other task models which must run
before and after that particular task model. The “before” and “after” lists are essential to
determine the task dependencies to the task manager. [CALD93][CERb94]

Once this information has been provided by each task model, the task manager
uses the following algorithm to determine which tasks run and when:

1) Get a list of roles which this vehicle is performing (such as company
commander, platoon leader, etc.). One of these roles is always that of the vehicle itself.

2) For each role, determine if any of the current task frames have been
unassigned. If so, remove those task frames from the stack.

3) For each role, determine if the enabling tasks of any subsequent task framed
indicate that those frames should be executed. If so, start the new frame.

4) For each role, traverse the current frame and create a list of tasks to execute.

20

5) Sort the task execution list such that the “before” and “after” constraints of
each task model are satisfied.

6) Examine the resulting task execution list to determine if any tasks which were
executed last simulation clock “tick” are no longer in the list. If any tasks meet this
criteria, then suspend them.

7) Execute the tasks in the task execution list in order. [CALD93]
The task manager also handles the roles of unit leader and individual vehicle task

frame stacks. It handles the pushing and popping of task frames on the task frame stack.

This includes the starting, stopping, and suspension of tasks within that task frame.

6. Task Arbitration

The C2 architecture is not a simple one. Since each entity, vehicle, and unit has
a task frame, each with a set of tasks operating in “parallel,” there must exist a means for
conflict resolution among competing recommendations for action that are formed as a task
executes. Eventually, one single decision for action must result based on the task recom-
mendations. The body of software that is responsible for deconfliction of competing rec-
ommendations to form one decision is the task arbitrator. [CALD93]

The designers of ModS AF chose a “context-rich” form of arbitration. This means
that each task determines its preference, and expresses it in a way which provides the con-
text to make that decision. An arbitrator then selects a singie preference, or merges the mul-
tiple preferences using whatever context is necessary, and makes a more informed decision
regarding its subsequent actions. [CALD93][CER92]

In the ModSAF implementation, each task in the current frame executes and may

generate a recommendation for one or more actuators.? This recommendation is set locally,
within the context of each task frame. The arbitrators, which are tasks, are executed last by
the task manager. Each arbitrator will read the recommendations for each of the actuators

it is responsible for controlling from each task. The arbitrator uses a selection algorithm to

2. An actuator is a command to control a physical vehicle subsystem, such as traverse a turret to a
target, or move at a certain speed at a particular heading.

21

make a decision among the various tasks’ recommendations. Currently, it selects the rec-
ommendations of the task with the greatest priority. The arbitrator converts these recom-
mendations into commands which the actuator understands, and then sends those com-

mands to the actuator. This is illustrated in Figure 2. [CALD93][CER92]

\

Task Frame Stack /r
z N
\» /// Task Frame \

Task A N A TaskB

\\ Task C Task D
Tracked Vehicle Control \\
Movement Actuator k /
¢ Recommendations
y y y

Decision Movement Task Arbitrator

Task A may be to follow a route which wants the tank to go to a certain velocity and fol-
low a road. Task B may be a collision avoidance task which wants the tank to avoid
another tank in the road. Task C may be a defensive maneuver task to avoid being hit by
the enemy tank that was just sighted. Task D may be a targeting task that wants the tank
to slow down enough to make an accurate shot with its main gun at the enemy tank.
Only one of these task’s recommendations will be selected and executed.

Figure 2: Tasks and Arbitration, after Ref. [CER92]

E. TERRAIN DATABASE

The terrain database is a direct derivation from an earlier computer generated forces
program developed by Bolt, Beranek, and Newman (BBN) -- the ODIN Semi-Automated
Forces system. It comprises two major databases: the compact terrain database, and the
quadtree database. These databases are generated off-line using BBN’s S1000 terrain data-

base generation program, which takes raw data from various sources, such as the Defense

22

Mapping Agency’s (DMA) Digital Terrain Elevation Data (DTED) and other DMA prod-
ucts, geological maps, photographic data, and Air Force terrain photography. [STAN93]

1. Compact Terrain Database

The Compact Terrain Database is derived from S1000 data and other information
to generate an efficient representation of the terrain with regard to elevation, soil type, and
feature data. The database is stored in vector format, which lends itself to the use of high
performance algorithms for computing point-to-point visibility, radar masking, elevation
lookup, vehicle placement on the terrain, and graphical display of the terrain database. The
elevation and soil type data are stored in a series of posts, where each post stores an eleva-
tion and two soil types (Figure 3). Using this method, a grid the size of the Fort Knox da-
tabase (50 km X 75 km) requires just under one megabyte of storage. [SMITHb93]
[STANO93]

In addition to the regular grid of elevations and soil types, some areas of the ter-
rain are modelled more precisely using microterrain. This is a collection of squares and tri-
angles which cover a portion of a patch. This allows for the inclusion of buildings, trees,
and linear features such as roads and rivers. For each patch, the microterrain and the surface
features are encoded together. Table 2 shows the terrain features that are represented in the
compact terrain database. The total combined elevation grid, microterrain and surface fea-

tures increases to about 4.5 MB of storage requirements for the Fort Knox database.

2. Quadtree Database
The quadtree terrain database is used to represent certain terrain features as ob-
jects. This makes for a more effective structure for intelligent terrain reasoning. Features
(Table 3) are represented as objects with appropriate attributes for semi-automated force
reasoning. The terrain database is divided into square quad nodes, which are further sub-
divided down to a fixed size leaf node. [STAN93]
In Figure 4, a simple quadtree terrain representation is presented. In this example,

the major quadrants are numbered as depicted. These quadrants are further subdivided into

23

500 Meters
Patch

\>

— Post -- Elevation

\\\ \ — Trianglel Soil Type

T Triangle2 Soil Type

500 Meters

A patch is a4 X 4 collection of squares for a total of 500 X 500 meters.
A square is 125 meters X 125 meters, bisected by a diagonal from southeast to
northwest. A post contains elevation data and soil data for the two triangles to its

southeast.

Figure 3: Compact Terrain Database Format, from Ref. [STAN93]

Terrain Type Terrain Features
Terrain Surface Ground Polygons
Water Polygons
Structures Buildings
Pipelines
Power Pylons
Other opaque, non-penetrable structures
Trees Individual trees
Tree lines
Tree canopies
Linear Features | Roads
Rivers

TABLE 2: Compact Terrain Database Features, from Ref. [STAN93]

24

Feature

Type

Attributes

Road Segments

Linear

Point List
Width
Distance
Intersections
Bridge

X Y Extents

Road Intersection

Point

Location
Segment IDs
Intersections
Bridge

River Segments

Linear

Point List
Width
Distance
Intersections
Fordable
Bridge

X Y Extents

River Intersections

Point

Location
Segment IDs
Intersections
Bridge

Railroads

Linear

Point List
Width
X Y Extents

Bridges

Point

Location
Point List
Width

Trees (individual)

Point

Location
Height
X Y Extents

Treelines

Linear

Point List
Height

X Y Extents
Impenetrable

Table 3: Quadtree Feature Attributes, from Ref. [STAN93]

25

Feature Type Attributes

Tree Canopies Area Point List
Height

X Y Extents
Impenetrable
Level

Buildings Point Location
Footprint
Height
Type

Mobility Areas (Lakes, Area Point List
Oceans, Marshes, Boulder Soil Type
Fields) Level

X Y Extents

Political Boundaries Linear Point List
Width
X Y Extents

Pipelines Linear Point List
Width
X Y Extents

Power Lines Linear Point List
Width
X Y Extents

Town Names Point Location
Label
Offset

Table 3: Quadtree Feature Attributes, from Ref. [STAN93]

26

Quad Node Numbering ?

4 1

1 [l 2] 5] [4]

Figure 4: Quadtree Data Structure Representation from Ref. [LORAD93]

27

four leaf nodes each, which are also numbered in the same relative order as the parent. The
sample terrain contains a river and a road, both of which are represented as linear array
structures which contain a pointer to a data structure that represents the road and river net-
work.

Each segment in the network contains such a data structure, which is essentially
arecord containing the midline points, width for that segment, distance, and other attributes
such as a bridge (road network), or whether or not that particular segment is fordable (water
network). Additionally, there is an array of pointers to a record containing a list of intersec-
tions with other segments. This record simply lists the segment ID and intersection ID of
all adjacent segments and intersections. The combination of these two data structures sim-
plifies terrain reasoning, such as moving from one point to another using a road, or in de-

termining which route to take to successfully cross a river.

3. Terrain Database Usage

The following are the ways in which the ModSAF uses the databases.

a. SAFstation:

Uses the compact terrain database for intervisibility display tools, contour
lines, and hypsometric tinting to show elevations, and a terrain cross-section display tool.
It uses the quadtree database to draw the two-dimensional map display. The quadtree data-
base is also used for route generation to create road routes (using the road network), and to
check for water crossings on all ground routes (using both road and river networks). It can
also generate routes around area features such as tree canopies and lakes. [CER92]

[STAN93]

b. SAFsim:
Uses the compact terrain database to place vehicles on the terrain with re-
spect to elevation and orientation. The compact terrain database is also used for intervisi-

bility calculations between vehicles, which is required for detection and targeting. Addi-

28

tional uses are to calculate slope and to obtain the soil type. When flying missiles and air-
craft are modeled, it is used to detect ground collisions. The quadtree database is used by
the SAFsim to determine vehicle movement, especially along road routes, finding crossing
points across bodies of water, and locating paths through obstacles such as tree lines, etc.

Additionally the quadtree database is used to determine the relative mobility of a particular

route, the effects of terrain on cover and concealment, and METT/T 3 considerations. Table

4 summarizes the way terrain is represented in ModSAF. [CER92][STAN93]

F. ModSAF SOFTWARE DESIGN

ModSAF is written in Kernighan and Richie (K&R) C with a few extensions, such as
the use of longer than eight character variable names, and the definition of function proto-
types. The developers used an “Object Based” design approach, meaning that subsystems
are separated by the use of libraries. These libraries have a clearly defined public interface,
and a private data structure that contains the information essential to the internal operation
of the library. These conventions are merely an observation; the programmer could include
internal variables and functions simply by including the local header file; but this is con-
sidered to be a very poor programming practice [LORAa93].

The intent behind the Object Based approach in library construction is that the
public functions become the “methods” of an “object.” There is a form of inheritance, as
certain libraries are shared among others. For example, a turret “object” can be used by all
tanks and turreted infantry fighting vehicles (IFV’s); the particular characteristics of the
turret are modified by the use of parameter variables. These libraries, however, do not ex-

hibit the other traits of object-oriented languages, namely, polymorphism. Additionally,

3. METT/T: Mission, Enemy Situation, Troops Available, Terrain Considerations, Time Available -
- all these are critical factors in mission planning and execution.

29

the incorporation of an object-oriented language, such as C++, is nearly impossible, as the

main function and all function prototypes have not been defined using C++ conventions.

Feature Type CTDB Quadtree
Ground 3D Vectors (polygons) not represented?
Trees X, Y, Height, Width Models®
Tree Lines 3D Vectors, Height Models
Tree Canopies 3D Vectors (polygons) Models
Structures 3D Vectors (roofline) Models
Roads, Rivers, Rails 2D Vectors Networks
Lakes Part of Ground (differen- | Models

tiated by soil type)
Bridges Not Represented® Models
Towns Not Represented? Names
Pipelines Treated as structures Networks
Power Lines Not Represented Networks
Political Boundaries Not Represented Networks

Table 4: Terrain Representation in the ModSAF Databases from Ref. [CER92]

a. The quadtree database can optionally load a list of contour lines, if the CTDB is not

being used.

b. A model consists of a 2D outline, a height, a bounding box, a type specifier, and flag
indicating whether the feature is penetrable.
c. In the CTDB, bridges occur where roads happen to cross over water.

d. The structures within a town are represented, but no grouping of these structures is
done. In the sample terrain databases provided with ModSAF version C, buildings are not

represented.

The current version (version 1.2) consists of a total of 596,885 lines of code and com-

ments, divided into 255 libraries. Of this total, 396,965 lines are source code (C and in-line

code); the remaining lines are comments and white space [SMITHa94]. All libraries in-

clude documentation with declaration of public functions, library requirements, and utili-

30

zation. Despite this, the sheer size of the code makes ModSAF extensions and enhance-

ments a non-trivial task.

G. SUMMARY

ModSAF is a complex, distributed application that models computer generated forces
at the single entity level in support of distributed simulation in virtual environments. The
various programs that comprise the ModSAF system communicate with each other and
with manned simulators using an agreed-upon set of protocols over a local area network.
The ModSAF programs share a common Persistent Object database to distribute the work
load over several systems. ModSAF is heavily data-driven; the parameters required to
model vehicles and their behaviors are determined by text files that can be modified with-
out requiring a recompilation of the program.

All entities are represented as a set of Persistent Objects. Each of these entities is
aware of its environment through the execution of one or more Augmented Asynchronous
Finite State Machines, which define a particular entity’s behavior at a given time.

ModSAF requires frequent and detailed operator intervention for command and con-
trol of the forces. The vehicles and units will effectively react to changes in their environ-
ment, but will not transmit intentions or coordinate actions outside the unit aggregation.
The next chapter presents an architecture to allow a company-sized unit to perform detailed
mission planning from a battalion-level operations order generated by a human user. This
mission planner is intended for pre-execution processing; this is analogous to the planning

cycle used by the US Army to command and control forces on the actual battlefield.

31

32

IV. MISSION PLANNER ARCHITECTURE

The architecture of the mission planner was intended to be as modular as possible.
This would closely follow the programming paradigm initiated by the ModSAF develop-
ers, and would allow for insertion of test modules for effectiveness testing. The architec-
ture was first proposed in [MOHNO94], and has evolved into its current state through imple-
mentation in ModSAF.

The architecture is as depicted in Figure 5. It consists of four distinct components: the
Operations Order (derived from the Army’s five paragraph operations order), the Data For-

matter, the Mission Selector/Evaluator, and the ModSAF Orders Generator.

A. OVERVIEW

The mission planner can be described as a set of user-defined inputs, conversion of
the input data, a reasoning process, and the conversion of the results of this reasoning to a
set of ModSAF orders and phases that are assigned to the selected maneuver company. The

user-defined inputs are entered via a graphical user interface, using the US Army’s five

paragraph operations order (OPORD)! format, and an associated set of overlays on a Plan
View Display (PVD) (Figure 6).

The data formatter is transparent to the user, but is required to convert the input data
to a form usable by the reasoning process. The reason the data formatter is separate from
the data input process is to allow the employment of different reasoning processes. If the
input data is relatively unchanged in scope and amount, then the only change required to
incorporate a different reasoning process is the conversion of the input data.

The reasoning process (labeled “Mission Selector/Evaluator) can be any methodology
that is capable of employing heuristics in determining a “workable” solution. The focus
here is to optimize the planning process by constraining as many input variables as possi-

ble, yet retaining enough to derive an acceptable result. Searching for the optimal solution

1. Also known as a five paragraph field ordef.

33

B
N—uv. Data Formatter
verla
Yy _
Mission Selector/Evaluator
r—r——--""—-""—-—""—"-"""—-"—"—""7"——— - —— = — — — = — |
_ METT/T Factors _
| Rational Behavior Model Company Commander Goal-Driven, _
| Strategic Level Backward-Chaining |
“ Rational Behavior Model _ __
Five-Paragraph OPORD | Tactical Level] |
| Data-Driven, _ |
| Forward-Chaining Terrain Analysis | Company Mission | |
| Submodule Submodules |

34

Rational Behavior Model
Executjon Level

ModSAF Orders Generator

Figure 5: Mission Planner Architecture

in a given situation has been determined to be NP-complete for one prototype Multiagent
Adversarial Planner [ELSA91]. It is proposed that applying the Rational Behavior Model
to computer generated forces command and control will help to constrain the reasoning
space, in addition to the use of heuristics. In this case, the first two levels of the Rational
Behavior Model are contained within this reasoning process; the bottom level is contained

within the ModSAF low-level form of control using AAFSMs and task frame stacks.

User (Battalion Commander) [

Start
Again

Reasoning
Process

ModSAF
Orders
Generator

Data
Formatter

Figure 6: Data Flow Overview

ModSAF tasks

The results of this reasoning procesé are presented to the user for approval. If the user
accepts the results, then the reasoning process ends. If the user rejects the results, then the
process begins anew by allowing the user to modify the input data set.

Finally, the user-approved results of this reasoning process are converted to a set of
ModSAF tasks, task frames, and enabling tasks that connect them. As in the data formatter,
this is a separate module that is intended to be easy to modify to accommodate different

reasoning processes.

B. THE FIVE PARAGRAPH OPERATIONS ORDER
The US Army’s five-paragraph operations order (OPORD) is a standardized docu-

ment that enables a trained reader to rapidly develop an understanding of the overall situa-

tion, mission, commander’s intent for the operation, and tasks of subordinate units. This

35

format is universally understood throughout the US Army, and thus is an intuitive way for
amilitary user to assign orders to subordinate units. The five paragraphs are Situation, Mis-
sion, Execution, Service Support, and Command and Signal. See Appendix A for detailed
description and sample five-paragraph OPORD.

Map overlays containing maneuver graphics are essential accessories to the basic text
order. Overlays serve to graphically illustrate the contents of the order. In most cases, the
OPORD text will refer the reader to these overlays, especially within the Situation and Ex-

ecution paragraphs.

C. DATA FORMATTER

The data formatter takes the information that the user entered through the OPORD and
the overlay and converts it to a form that is usable by the Mission Selector/Evaluator.
While some forms of data require little conversion, data derived from the overlay will re-
quire processing by queries to the Persistent Object Database to derive the required infor-
mation. Separation of this module from the others allows for rapid changes to be made to
the data structures that result from the Operations Order module. Future versions will in-
clude a “fuzzification” submodule for conversion of input data into fuzzy sets for process-

ing by a fuzzy logic expert system.

D. MISSION SELECTOR/EVALUATOR
This module contains the artificial intelligence submodules required to develop cours-
es of action (CA) that meet the requirements of the operations order. These submodules

comprise the first two levels of the Rational Behavior Model.

1. Strategic Level
The strategic level of the Mission Planner controls the actions of the tactical lev-
el. It will seek to fulfill the goal conditions of the order by the generation of one or more
courses of action. These courses of action would be evaluated based on success expecta-

tions and ordered as such (“best” expectation first). They are then presented to the human

36

user for approval. If the human user approves a course of action, it is converted to a Mod-
SAF order for subordinate units of the company.

The strategic level would take the information in the Operations Order that de-
tails the desired end state for each major phase in the operation. The user input would pro-
vide constraints to the methods available to accomplish this end state. This level is a goal-
driven, backward-chaining submodule that identifies the intermediate steps required to at-
tain the goal. This submodule would execute exactly once for each course of action to be
generated.

If written in Prolog, which is a natural choice for this level, the code would look

something like the following:

goal :- attack.

goal :- defend.

goal :- move.

goal :- assembly area.

/* ... */

/* The following is the source code for the “attack” subgoal tree. */
attack :- consolidate_on_objective.

consolidate_on_objective :- assault_objective, enemy_can_be_destroyed.
enemy_can_be_destroyed :- good_odds. /* (external computation) */
assault_objective :~ attack_position, company_intact.

attack_position :- axis_of_advance, company intact.

attack_position :- last_phase_line, company_intact.

axis_of_advance :- move, company_ intact.

last_phase_line :- move, company_intact.

company_intact :- company_effective. /* (external computation) */
move :- company._ deployed.

company_deployed :- wedge_formation. /* (external computation) */

company_deployed: - vee_formation. /* (external computation) */

company_deployed:~- line_formation /* (external computation) */

/* -~ end -- */

/* Initial conditions: wedge_formation, company_ effective, good_odds.
*/

2. Tactical Level

The tactical level of the Mission Planner executes the company drills such as
“move,” “attack,” and “defend.” For each of the subgoals identified in the strategic level,
there exists at least one node in the tactical level to execute this subgoal. This level is by

nature data-rich, and therefore supports the use of a data-driven, forward chaining expert

systems language such as Lisp or CLIPS.2 The strategic level would only expect a boolean

37

value TRUE when each subgoal is complete, however, the data structures that reflect the
results of each rule-based system have to be created and stored to pass to the ModSAF Or-

ders Generator.

E. ModSAF ORDERS GENERATOR

The ModSAF Orders Generator converts the results from the Mission Selector/Eval-
uator into a set of ModSAF task frame stacks that are assigned to the company’s elements
(unit and/or vehicle). Under certain conditions, a company-level task frame could be gen-
erated that would affect all elements of that company. This module, and the ModSAF aug-
mented, asynchronous finite state machines generated from this module comprise the exe-

cution layer of the Rational Behavior Model.

F. SUMMARY

The mission planner architecture consists of four modules, two of which are data con-
version modules. The user is presented with a graphical user interface with a modified US
Army operations order containing a limited set of input choices. The information from the
operations order is converted into a form readable by the Mission Selector/Evaluator. The
Mission Selector/Evaluator performs a “reasoning process,” using the top two levels of the
Rational Behavior Model as the framework about which the mission planning is performed.

The results of this reasoning process are presented to the user, who has the power to
accept or reject the results. If accepted, the information is converted to a set of ModSAF
tasks, which represents the lowest level of the Rational Behavior Model. If rejected, the
user is presented with the operations order, where changes to the order can be made as re-
quired. This architecture can be implemented in various ways. Chapter V discusses the

design strategies that were considered in the implementation of this architecture.

2. CLIPS: “C Language Integrated Production System” [GIARR93)].

38

V. MISSION PLANNER DESIGN STRATEGY

Two courses of action were considered in the design of the mission planner. The first
was to develop a stand-alone application that would interface with ModSAF through the
Persistent Object Protocols -- the distributed strategy. The second course of action was to
incorporate a library into the existing ModSAF code -- the integrated strategy. Both strat-
egies share common design considerations, and have corresponding advantages and disad-
vantages. Both strategies were implemented to some degree, and the implications of each

will be discussed in Chapter VI.

A. COMMON DESIGN CONSIDERATIONS

Certain aspects of both design strategies are common to both. The operations order
graphical user interface (GUI) design, the extensive reuse of the existing ModSAF code,
the design and incorporation of fuzzy sets for the expert systems, and the reasoning model

are all common to both design strategies.

1. Operations Order Graphical User Interface
The OPORD GUI design strategy was to take advantage of the ability of Mod-
SAF to create editors through their definition in text files by using the LibEditor library
[SMITHc93]. This library permits rapid development and modification of GUIs in the

OSF/Motif environment.

a. Operations Order Base Editor
The initial design of the base editor was to retain the basic ModSAF editor
“look and feel” while at the same time presenting the user with a readily understandable
format using minimal screen space (Figure 7). The base editor contains four separate sec-
tions: Assignment, Task Organization, Other Paragraphs, and “Paragraph 3 -- Execution.”
Since the focus of the OPORD is on Paragraph Three, a form of this paragraph is included

in the base editor. A portion of the editor is dedicated to the display of the unit organization.

This closely reflects the OPORD “Task Organization” portion, which is actually in Para-

39

graph One (Situation), but bears displaying in the main editor. The other two sections con-

tain pushbuttons that allow the user to select the other editors in the set, or to assign, print,

or cancel (exit) the operations order and return.

Operations Order Editor

| Assign | L Para 1 Situation 1 l Para 4 Service Support |
I Para 2 Mission I |&ua 5 Command & Signaﬂ
Execution Matrix (Paragraph 3 Execution)

Attack j *

Defend :] Task Organization?
Continue

Move On Order

Control Graphic

Text Feedback window here...

Figure 7: Preliminary Design -- Base Operations Order Editor

b.

Operations Order Subordinate Editors

The conceptual design of the subordinate editors follows that of the top lay-

er editor, but without the complexity (Figure 8). Paragraph One contains the essential

graphical elements of the Situation Paragraph. The original intent behind the “Enemy Sit-

uation” and “Friendly Situation” pushbuttons was to provide a capability to graphically

portray friendly and enemy elements on the tactical map. Paragraph Two was also graph-

ically-oriented, depending on the ModSAF Overlay Creation editor set for data input.

Paragraphs Four and Five were developed to complete the OPORD process

b4

and allow for future expansion to the considerations of supply status and chain of command

selection in mission planning.

40

AL pue Anoyj ‘omJ, ‘ou() sydeigeae -- sioppaqng JopaQ suonerdd() :g aangiq

Q10 MOPUIM YOBQDI] 1X5],

(pba1 se Auew se)[]
ase D
19pRaTId PE []
opes
1peaTId PT [| TS | m
sopeaud 151] . [eoued |
4/'- puBWIUIO)) JO Urey)) _ [Buoq |

[eusiS 3 puewwo)) -- ¢ ydeageaeg

**QISY MOPUIM YORGPID] IXAL,

— 1

Sa0IAIaS pue Ajddn
oJuy usurade[doy ! _ IAIS§ pUE AL mf_

[eng
voddng [edtpay owwy k\ E

[ewed]
y10ddng 143G -- p ydeageaeg

[PUUOSISg _

QI3 MOPUIM JORQPIS] 1XAL

_ UOISSTIA] JO SoLIEpUnog _

[Puoq]

UOISSIIA] -- 7 ydeaseaeq

UOTINOSXH JO QWIL], __ UOTIO9[S HOISSIJA 4

QIO MOPUIA YORQPI] 1X3L,

uoneziediQ) yseL,

_ $9010,] AJpuoLLy _

[P2w=3]
[uoq]

uonenig -- T ydeadeaeq

— uonezIuesdiQ) yse], a5usyy _ _ $3010,] Awoug _

41

2. Fuzzy Set Design

Fuzzy logic and the use of fuzzy sets in the development of rule-based expert sys-
tems is a well-documented method for reasoning under uncertainty. Fuzzy set theory was
first proposed by Zadeh in 1965 [ZADEH65]. Fuzzy logic involves testing for membership
in these tests, and was proposed as a means for expert system reasoning under conditions
of uncertainty [ZADEH79]. Today, fuzzy logic is an extensively used development tool
for expert and embedded systems.

In the Mission Planner, fuzzy logic is to be used in the Tactical Level of the Ra-
tional Behavior Model to represent certain variables, and to determine a relative probability
of mission success. This more approximates the level of uncertainty in battle, especially
with regard to enemy situation, terrain, the actual meaning of the mission, the effectiveness
of friendly forces, and the time available to plan prior to execution of the mission. One ad-
vantage of fuzzy systems is that the variables and their modifiers do not initially require
actual fuzzy centroids to be implemented as rules. One can develop the fuzzy rules and test
the overall system by assigning a “crisp” value to the set as a whole. While this may lead
to inaccuracies in the initial prototype, this method allows rapid creation of the fuzzy rule
set and the description of a particular environmental state using terms understandable to hu-
mans. Once the rules have been developed, then subsequent prototypes will include the
fuzzy set operations and calculation of set membership using Max-Min Inference or Max-
Product Inference and calculation of fuzzy centroids [DURK94].

The development of fuzzy membership sets into a rule-based expert system is de-
scribed in [DURK94], and is broken down into a series of discrete tasks, as shown in Table

5. Tasks one through three include design considerations, and are enumerated below.

a. Task 1: Problem Definition

The Mission Planner must operate on a very large body of knowledge,
which is best subdivided into smaller categories. The use of the Rational Behavior Model

allows for compartmentalization of this knowledge, making each subcomponent smaller

42

and more efficient. Additionally, this strategy allows incremental development and testing,

and provides an easy mechanism for expansion.

‘Task #

Action

1

Problem Definition

Define Linguistic Variables

Define Fuzzy Sets

Define Fuzzy Rules

Build System

2
3
4
5
6

Test System

7

Tune System

TABLE 5: Tasks Required to Build a Fuzzy Expert System, After [DURK94]

b. Task Two: Define Linguistic Variables

Linguistic variables (also known as fuzzy variables) describe the collected

body of fuzzy knowledge. These variables will be used in the construction of fuzzy rules.

All linguistic variables have a range of possible values, which are also defined in terms of

their minima and maxima. The Mission Planner’s set of linguistic variables is enumerated

in Table 6 and graphically depicted in Figure 9. This set contains the essential elements

of mission planning, derived from the US Army’s acronym “METT/T "1 [TARMY88]. They

are:

» Enemy Forces: This is a force ratio compared to your own forces. 10:1 means there
are ten friendlies to one known enemy; 1:10 means that the enemy is significantly
stronger than you are.

+ Intelligence Accuracy: Measures how accurate the intelligence picture is based on
ground truth. This reflects the level of uncertainty about the known enemy forces --
100% means totally accurate knowledge about the enemy strengths and dispositions
and isrelated to the numbers and types of intelligence collection assets (such as scouts,

etc.).

+ Troops Available: At company level, the commander considers the total number of

1. Mission, Enemy forces, Troops available, Terrain, Time available.

43

Troops
Available @

INPUTS MISSION PLANNER

OUTPUTS (Company Commander)

Unit Order
of March/Plt
Locations

Success
Probability
Announcement

Movement
Technique
(if applicable)

Figure 9: Inputs and Outputs of Mission Planner

Range
Variable Name Min Max

Enemy Forces <1:10 >10:1
Intelligence Accuracy 0% 100%
Troops Available 6 vehicles 24 vehicles
Time Available 1 hr >24 hrs
Terrain Slope 0 degrees 30 degrees
Terrain Soil Type >4 1
Terrain Vegetation 0% 100%
Terrain Trafficability 0% 100%
Terrain Obstacles 0 >5
Success Prediction 0% 100%

Table 6: Linguistic Variables and Their Ranges

44

combat vehicles (tanks and infantry fighting vehicles) available to him for a particular
operation. If the company has six vehicles, then it is at less than 50% strength and is

considered to be barely combat effective. The most a commander can effectively con-
trol is five platoons for a total of 24 vehicles.

« Time Available: The total amount of time available to the commander to plan and pre-
pare for the operation. The more time available, then the more opportunities to re-
hearse, receive reinforcements, and to prepare positions.

+ Terrain Slope: Measured in degrees -- the steeper the slope, the more difficult the route
(hence slower speeds required). If the slope is greater than 30 degrees, then this is con-
sidered impassable.

« Terrain Soil Type: A hard-surface road (gravel or improved) has a value of 1; any val-
ue greater than 4 is impassable. This could be expanded to include all 16 soil types
defined in the compact terrain database library, but for now will be limited to these
four [SMITHb93]. |

» Terrain Vegetation: 100% vegetation hinders movement but maximizes concealment
from the enemy.

« Terrain Trafficability: A combination of the slope, soil type, and vegetation.

» Terrain Obstacles: These are considered to be man-made versus natural obstacles (nat-
ural obstacles are covered in Terrain Trafficability). If there are greater than five ob-
stacles, then the route could be considered to be impassable without significant engi-
neering support.

+ Success Prediction: This is a fuzzy value derived from combining the enemy force ra-
tios, intelligence accuracy, terrain trafficability, and terrain obstacles to derive a com-
pany commander’s prediction of success.

+ Movement Technique: This is applicable in Attack and Move missions. In the attack,
there are three basic movement techniques -- travelling, travelling overwatch, and
bounding overwatch. In a movement, there are essentially two -- road march and trav-
elling. :

c¢. Task Three: Define Fuzzy Sets
The fuzzy sets derived from the linguistic variables are now defined in terms
of modifying adjectives. Table 7 enumerates a list of adjectives that will be used with each
linguistic variable.
Fuzzy sets are now constructed using the modifying adjectives. These are
defined in Appendix B, and include fit vectors. The use of fit vectors ensures that all fuzzy
sets have sufficient overlap to assure that every possible value establishes some fuzzy set

membership value.

45

Enemy Forces Intelligence ,—,:.uoum ,E._.:m Terrain
Accuracy Available Available Slope
Impotent Erroneous Ineffective None Level
Weak Inaccurate Weak Short Gentle
Parity Questionable Company Mi- | Moderate Moderate
nus
Strong Accurate Normal Long Steep
Overpowering Reliable Reinforced Extended Precipitous
Terrain Soil Terrain Terrain Terrain Success
Type Vegetation Trafficability Obstacles Prediction
Improved Open Impassable Zero Zero
Normal Thin Difficult Light Problems
Dithicult Moderate Moderate Moderate Maybe
Impassable Thick Easy Dense Good
Dense Smooth Impassable Outstanding

Table 7: Linguistic Variables and their Modifying Adjectives

46

3. Reasoning Models -- Expert System Submodules
At least four reasoning models must be constructed in the Tactical level that em-
ploy fuzzy logic. These are: the terrain reasoning submodule, the attack submodule, the
defend submodule, and the move submodule. Additional models may be constructed as
needed, to complete the inclusion of all aspects of METT/T; however, some may be best

represented empirically through the user interface.

a. Terrain Reasoning Submodule
The terrain reasoning submodule is a general-purpose model that provides
input to the others through the selection of movement routes for the Attack and Move sub-
module, and identification of possible enemy routes of advance in the Defend submodule.
It will use the Compact Terrain Database as its input, and will require some additional pre-

processing to “fuzzify” the data.

b. Attack Submodule

This submodule contains the elements required for a company to plan an at-
tack. Planning elements include objective identification, route determination, (using the
Terrain Reasoning submodule), enemy forces throughout the area of operations, and any
restrictions that may be imposed on the company by the battalion commander, such as fol-
lowing an axis of advance, and boundaries. Additionally, this submodule needs to deter-
mine the nature of the attack and select the attack type appropriate to the mission, which
has a bearing on the final disposition of the company after the attack. There are two types
of attack: terrain-oriented and force-oriented.

A terrain-oriented attack is rarely conducted unless absolutely required for
the success of a particular mission. Such terrain is considered to be critical terrain, and is
required to be physically occupied. An example of this ié a single bridge crossing an un-
fordable river. In this case, all considerations of enemy force destruction are secondary to

the attaining of the physical objective.

47

A force-oriented attack is the more common type. In this form of attack, the
objective is the most probable location of the enemy’s force that must be destroyed. This
means that commanders can adjust the location of the objective based on the updated ene-

my situation, as long as the goal is achieved -- destruction of the enemy force.

¢. Defend Submodule

Since the defense naturally assumes that the enemy force is stronger (or at
least, has the initiative), the decisions to be made here are less concerned with the size of
the enemy force; focusing instead on the ability of the company to effectively engage at the
maximum range of their weapons systems, and ensure mutual supporting fires. Planning
considerations for the defense include available preparation time, the orientation and direc-
tion of the enemy’s main attack, and determination of possible enemy avenues of approach.
Like the attack submodule, there are different considerations if the defense is terrain-ori-

ented or force-oriented.

d. Move Submodule

A company-level maneuver force will employ two basic forms of move-
ment: tactical and administrative. Tactical movement is incorporated into the above two
submodules as a means of attaining the overall goal. This submodule reasons about admin-
istrative moves, or road marches.

A move mission is performed when a company must travel from one loca-
tion to another, usually within its own territory. As a result, the likelihood of enemy contact
18 much less than with the previous two missions. However, this does not mean that all con-
siderations of enemy capabilities can be discarded. Ground maneuver companies in a road
march must be constantly on the lookout for enemy fixed wing and rotary wing aircraft,
partisan activities, and enemy deep strikes. Also, if the known enemy situation is not clear,

then additional security precautions must be made.

48

B. DISTRIBUTED APPLICATION STRATEGY

This strategy involves building a separate application that incorporates ModSAF li-
braries but performs no simulation (Figure 10). It would communicate with the ModSAF
stations through the Persistent Object (PO) Protocols, and have access to the PO Database.
The user would see the same Plan View Display as the ModSAF staﬁon, less some tool
icons. The option to view individual vehicles would also be optional, as the user would not
directly control the company from this station.

The user would have the ability to create the unit, select it, and generate an operations
order using the GUI described previously. The application would require a configuration
of ModSAF to be active and communicating on the network using the same PO Database
and exercise. Additionally, the station would be required to read DIS packets to monitor
the situation.

The advantages of this strategy include code reuse and simplification, since this is es-
sentially a ModSAF application less the capability to generate and modify task frames and
execute augmented asynchronous finite state machines. This would reduce the taxation of
system resources, allowing room for the artificial intelligence modules to be inserted. Ad-
ditionally, this stand-alone application could be written in a truly object-oriented language,
such as C++ or Ada 9x, thus providing a means to encapsulate data for use by object-ori-
ented artificial intelligence languages such as Common LISP or the CLIPS Object-Orient-
ed Language (COOL).

The disadvantages of this strategy include the requirement to update the code every
time a new version of ModSAF is generated. Additionally, many of the libraries are tightly
coupled to each other; selection of which libraries to include and, more importantly, which

ones to reject require a significant investment in time and resources.

49

AVSPOI w0 djeredag Jauue|q uoIssIjAl -- udisa(q payngrusi(0y dansiy

Auedwio)

D

Joyp3 sdo wun

aseqeleq

108lqo
juslsisiad

10)Ip3 uoneald Jun 8]eai/I0}lUoi\

sAejdsig/seie|nwig

18pI0
suoneladp

uoISSIIN subissy
/sejesln

ioup3
Jap1Q suonesado

108]9S

4031p3 uoneald wun

lauue|d uoissip ajealn

/IONUON

C. INTEGRATED APPLICATION STRATEGY

This strategy involves using ModSAF as the basic application, and simply adding a
separate library to the system (Figure 11). The library would contain the operations order
GUI, along with the ability to call compiled artificial intelligence submodules.

The user, through the ModSAF application, creates the company-sized unit from the
Unit Creation editor. The user then selects that unit by clicking on its icon, or one of the
vehicles from the tactical map, which brings up the Unit Operations Editor. The “Opera-
tions Order” button can now be pressed to launch the to start the operations order.

The advantages of this strategy include simplicity and economy of workstation re-
sources. A separate workstation is no longer required, and incremental testing can be per-
formed quickly, as no network resources are required (one could test the library from within
a combination SAFsim and SAFStation disabling the network protocols). Additionally,
this strategy follows closely the intent behind ModSAF’s acronym -- modularity. It simply
adds one more library to the hundreds already present.

The disadvantages of this strategy include increasing the complexity of an already
complex application, and the lack of system resources such as random access memory and
CPU cycles to execute the artificial intelligence submodules. A possible solution is to al-
low the OPORD to be selected only if the workstation is a SAFStation, and the simulation

augmented, asynchronous finite state machines are executed by a separate SAFsim.

D. SUMMARY

Two courses of action were identified that shape the design of the mission planner.
One course of action is to develop a stand-alone system that uses ModSAF’s distributed
architecture to communicate with the SAFStation and SAFsim. The second course of ac-
tion is to develop a library (module) within the ModSAF architecture itself. The distributed
strategy allows for a greater degree of freedom in the selection of the programming lan-
guage, and the integration of artificial intelligence languages within the system. The inte-

grated strategy is simpler to implement, and requires less modification of existing ModSAF

51

AVSPOIA JO 11ed Jauug|q uoissijy - udisa(q pajeddajuy ;11 aandig

Auedwo)

D

_mco_wm_s_
4VSPON
Slo}luo
subissy

18pIQ

>‘_m.—ﬂ_|_ adodo CO_um‘_mQO

4VSPON
subissy

10}ip3 suonessdo Hun

loyp3 :o:mmh@

she|dsiq
/sejesal)

109]8S

8jealn

d4VSPON

code. The common factors in the design of the Mission Planner include the development
of an intuitive graphical user interface for data input, the selection of a reasoning strategy,
and identification of the initial reasoning submodules. The next chapter discusses the de-

velopment issues that arose in pursuing these courses of action, along with the solutions, if

any, that were found.

53

54

VL. MISSION PLANNER DEVELOPMENT

The development of the mission planner proceeded initially by attempting the imple-
mentation of the distributed design strategy. The methods used to implement this strategy
were found to have significant shortcomings. Fixing these problems would have required
a major revision of the existing code. This was determined to be a much more significant
effort than the remaining research time allowed, so the integrated strategy was implement-
ed using a minimalist approach. This was successful.

The distributed strategy is still viable, but requires a different implementation method
and additional resources to fully develop it into a working prototype. This chapter discuss-

es both implementations, and concludes with recommendations for further development.

A. INITIAL ATTEMPT: DISTRIBUTED DESIGN STRATEGY

The initial effort was focused on the development of a stand-alone application that
would allow the use of a truly object-oriénted language, such as C++. This language, un-
like K&R C, supports stronger type-checking, polymorphism, and object inheritance. This
was initially selected to make the application development easier, as C++ supports stronger
type checking, and the use of objects for mission selection would closely follow the object-
oriented paradigms in the Common Lisp Object System (CLOS) and CLIPS [GIARR93]
[STEE90][STRO91]. |

ModSAF libraries were used exclusively to share the PO database, define network
protocols, and create the plan view display. This required a rewrite of the main.c code to
allow it to be compiled in C++, and the dual definitions in all public header files of the func-
tion prototypes, to support both K&R C and C++. Table 8 summarizes the changes re-
quired for each affected library. This prototype application was basically a collection of 67
ModSAF libraries with a C++ wrapper, and was to be the basis for the development of the
mission planner. Unfortunately, this effort was an extremely tedious and time-consuming,
as a total of 47 libraries required modification of function prototypes. The ModSAF librar-

ies at the lower layers of execution are tightly coupled to each other, and the time spent at-

55

Item Library File Name Function Name(s)
1 libbgr libbgr.h typedef struct BgrDC*
2 libassoc assoc.h AssocTickAssocLayer (int32)
3 libassoc assoc.h added #include <stdtypes.h> for int32
4 libpo libpo.h All public functions
5 libqueue libqueue.h All public functions
6 libpktvalve libpktvalve.h All public functions?
7 libreader libreader.h All public functions®
8 libp2p p2p.h All public functions
9 libcallback libcallback.h All public functionsd
10 libtime libtime.h time_init()
11 libsched libsched.h All public functions
12 libcmdline libcmdline.h All public functions
13 librdrconst librdrconst.h All public functions
14 libotmatch libotmatch.h All public functions
15 libechelondb libechelondb.h All public functions
16 libformationdb libformationdb.h All public functions
17 libdisconst libdisconst.h disconst_init()
18 libphysdb libphysdb.h physdb_init()
19 libpo libpo.h all handler types redefined
20 libparmgr libparmgr.h all public functions
21 libvtab libvtab.h vtab_init(), vtab_create_list().
22 libpbtab libpbtablh pbt_init(), pbt_set_size()
23 libentity libentity.h ent_init(), ent_set_minimum_pbt_error()
24 libstealth libstealth.h stealth_init()
25 libc20bj libc2obj.h c2obj_init()
26 libquad libquad.h All public functions
27 libctdb libetdb.h All public functions

TABLE 8: Library Modifications to ModSAF for C++ Implementation

Item Library File Name Function Name(s)
28 libcoordinates libcoordinates.h All public functions
29 libroutemap libroutemap.h' All public functions
30 libtactmap libtactmap.h All public functions
31 libsafgui libsafgui.h All public funcFions
32 libprivilege libprivilege.h All public functions
33 libpvd libpvd.h All public functions
34 libeditor libeditor.h All public functions
35 libxfile libxfile.h All public functions
36 libsensitive libsensitive.h All public functions
37 libbgrdb libbgrdb.h bgrdb_init()

38 libbgr libbgr.h BgrInitWithDisplay()®

39 libselect libselect.h All public functions

40 libview libview.h - vw_create()

41 libgraphics libgraphics.h All public functions

42 libunits libunits.h units_create_editor()

43 libopord libopord.h convert to c++

44 libdelobj libdelobj.h All public functions

45 libtdbtool libtdbtool.h All public functions

46 liboverlay liboverlay.h All public functions

47 liblocalmap liblocalmap.h localmap_init(), localmap_set_tactmap()

TABLE 8: Library Modifications to ModSAF for C++ Implementation

a. In the file libbgr.h (in libbgr library), the following was changed: typedef struct BgrDC { to:
#if defined(_cplusplus) Il defined(c_plusplus)

typedef struct {
#else

typedef struct BgrDC {

#endif

b. Included libshmif.h to libpktvalve.h, and stdtypes.h to libentity.h.
¢. Changed the variable declaration in reader_set_search_paths from "default” (reserved word) to "de-
falt” (this is what was declared in rdr_parser.c and rdr_parser.y).

d. Also required an explicit type cast to type CALLBACK_HANDLER from type int32.
e. This function was declared without any references to the required arguments so the elipsis (...) was

used.

tempting to determine their dependencies was significant. Complicating this effort was the
fact that certain variables were C++ reserved words. For example, all the libraries had to
be modified to remove instances of “class” and replace them with “mclass,” and “new”
with “mnew.”

Additionally, all the function prototypes in Table 8 required two separate definitions
-- one for K&R C and the other for C++. Each of the arguments to the functions had to be
declared, or at least defined with an ellipsis (...). This alerted the C++ compiler that the
arguments would be defined at a later time within the compilation process. The following
is an example without the ellipsis, from the Compact Terrain Database library (libctdb):

/* ctdb_point_on_database returns 1 if the point is on the database,
* 0 if it is not. All libctdb functions make this check internally.
*/

#if defined(__cplusplus) || defined(c_plusplus)

/* Defines a C++ function header */

int32 ctdb_point_on_database(CTDB *ctdb,
floatéd x,
float6d y);
#else /* Not defined c_plusplus */
extern int32 ctdb_point_on_database(/* CTDB *ctdb,
float64d x,
floaté6d y */);
#endif

Fortunately, the programming style guide required the definition of the arguments
within comments, so the majority of the functions were relatively easy to convert. The dif-
ficulty arose when an argument was of a different type than was defined. In K&R C, type
definitions are not as stringently monitored as in C++. Thus, the argument either had to be
cast to the appropriate type, or the ellipsis used, as shown below, from libbgr.h. This par-
ticular function was an excellent example of writing obtuse and unreadable code. Howev-
er, C++ allows the ellipsis, and the function was redeclared:

#1if defined(__cplusplus) || defined(c_plusplus)
int BgrInitWithDisplay (...):

#else /* Not defined c_plusplus */
extern int BgrInitWithDisplay {();

#endif

The end result was an application in which 66 out of 67 libraries were written in K&R

C (virtually unmodified ModSAF source code), one library was written in C++, and the

58

main.C file was written in C++. The application allowed the creation of a unit, and the dis-
play of platoon-level units and larger. Smaller units and individual vehicles were not rep-
resented.

This application, however, was sorﬁewhat unstable. The ModSAF system had to be
running with no problems, such as excessive state transitions, or it would crash. The de-
bugging effort was tedious and long, due to the requirement of maintaining at least a SAF-
sim on the network throughout. Libraries were included that were never used but were in-
cluded by libraries that were used. This needlessly inflated the code and introduced the

possibility of undesirable side effects occurring.

B. RE-EVALUATION OF DEVELOPMENT APPROACH

The release of ModSAF version 1.2 forced a reevaluation of the development process.
This release incorporated major changes in the code, making Version 1.0 and Version 1.2
incompatible with each other. This resulted in a complete change of approach, as the re-
definition of function prototypes would have to be repeated for all libraries in ModSAF 1.2
that were used by the mission planner. The use of C++ in the application development was
becoming more difficult to implement than it was worth.

A number of lessons were learned in pursuing this approach. The selection of a par-
ticular language depends significantly on the language of the preexisting code. Unless one
is willing to do a complete rewrite of the program, the programming language should be
the same as the majority of the code that will be reused in the new application. A minimal-
ist approach to code modification and extensibility should be pursued whenever possible.
In attelhpting to use the large body of preexisting ModSAF code, changes were made that
were inconsistent with good programming practices.v The integration of the new code with
the old code was not well-defined, and thus allowed inconsistencies in the application’s ex-

ecution.

59

C. SECOND ATTEMPT: INTEGRATED DESIGN STRATEGY

The second attempt was much more successful, and involved the building of a
separate library and incorporating it into the existing ModSAF code. This new library --
“LibOpord” -- was created and integrated in the same manner as the other subordinate
ModSAF libraries. Analysis of the code structure for both versions of ModSAF revealed
that the unit operations editor was the best choice for the insertion of the code to initialize
and call LibOpord. This is a base editor defined in the LibUnits library that allows the user
to enter a set of tasks for the selected unit, its subordinate units (if any), and individual
vehicles [SMITHe93]. It links these tasks together through operator defined phase
transitions, called enabling tasks [SMITHA93]. The unit operations editor was chosen as it
is the one that appears when a unit or a vehicle is selected from the Plan View Display. As
aresult, a minimal change to one existing ModSAF library was required, in addition to the

inclusion of the header file in the main.c preprocessor directives.

1. Integration of the Mission Planner Into ModSAF

The integration of LibOpord into the ModSAF library set was done in accordance
with [LORAa93]. The library requires the following modifications to LibUnits to become
available to the user:

* Modification of the data structure within LibUnits to include a Motif pushbutton wid-
get that will call the LibOpord editor, add a pointer to the LibOpord data structure, and
define LibOpord as an additional sub-editor.

* Inclusion of the initialization function within the LibUnits initialization routine
(“units_create_editor(...)) that will allocate memory for the data structures and build
the Motif GUI widget tree.

* Addition of a callback (units_operations_order(...)) within LibUnits that handles the
pushbutton mouse event.

Initialization of LibOpord is done as part of the LibUnits initialization steps; no
other library requires modification. This form of library initialization and utilization is

identical to the way other ModS AF editors are created and called.

60

2. Graphical User Interface Development

The base operations order editor was intended to be built using the LibEditor
functions, but this proved unfeasible due to the irregular nature and complexity of the edi-
tor. Instead, the editor was created using a Motif widget tree that allows the programmer
to build a customized GUI (Figure 12). The root of the widget tree is attached to the Mod-
SAF base GUI, forming a branch that is displayed when called [SMITHf93].

The subordinate editors were developed using the LibEditor library
[SMITHc93]. The LibEditor create function is called in the LibOpord initialization func-
tion for each subordinate editor. Currently, there are nine subordinate editors that are ini-
tialized in this manner. Every subordinate editor has two corresponding functions that are
called during runtime when the editor is displayed. The first function hides the base editor
and calls a LibEditor function to display the selected editor. The second function collects

the user input data when the editor is exited and control returns to the base editor.

3. Implementation Limitations

The OPORD editors constrain the user to a limited set of choices, which is sig-

nificantly different than a free-text OPORD. There are several obvious reasons for this:

a. Natural Language Processing Limitations
The limitations inherent in natural language processing do not allow for rap-
id integration of the data input to the other modules in the mission planner. This problem
is a subject of ongoing research; such a data entry system would be too complex and cum-

bersome to implement here.

b. Mission Simplification
One of the goals of the mission planner is to simplify mission determination
and selection by the human. An extremely rich OPORD editor would only serve to com-

plicate the generation of company level missions. Instead, a robust expert system should

61

331, 198pIM

IND paodQqry :71 aansig

uonng oipey) (uonng orpey) (uonng oipey) (uonng orpey)
Jjordwo) uspy 0PI U eH puajaq
(uonng orpey) (uonng orpeyy) (uonng orpey) (uonng orpey])
AINSBIIA [0NU0)D) anunuo) QA0 Jyoeny

A A

A A

(xog opey) aseydorpey (X0g OIpEY) UOISSTAOTPEY
T (1°qe]) 19 uonIsuer], » p ([9QET]) 19 aseyq
(xog) momﬁE Jojeredag (xog) xogqUOISSIIA
+ + (uonnqusny) LI -a—
o Acozsp:w:nc (uonnqusng) (UONNQUSNy) [90UL)) ~g—
JeusIS 2» puewwIo)) | UOISSTIA (wonnqusnd) uSissy e
uopnqysn uonngysn
tonmm:Hm %oﬁwimm A Hwowmw:mm (19qeT) Iap1Q suonelad(e
+ _ + 198 193pIm
(uwnjo)-moy) Kerdsig
[0DMOYIONPHANS uoneziuesiQ (uwInjo)-MOY) DYWAISAS

(uun(o)-moy) yewyg

; }

(swre1q) sIoppgqns

(swrery) sureay 310 (ourery) swerJualsLS

} }

(xog) oﬁ_wmvuomo

IND IVSPOIN \V

62

be able to compensate for the simplicity of input by reasoning about the circumstances of

the input data and making decisions in the context of the assigned mission.

4. Data Formatter

The purpose of the Data Formatter is to ensure the artificial intelligence submod-
ules of the Mission Selector/Evaluator receive the user input data in a usable form. The
Data Formatter is a set of data structures and the code that converts the data from one struc-
ture to the other. Its current implementation is as a structure of structures. There is cur-
rently no modification being done as the artificial intelligence submodules are not devel-
oped. The user interface through LibEditor requires that the data displayed and entered
must be placed in a separate structure for later processing. To simplify this procedure, a
base structure is defined that contains the five paragraphs in separate structures (Figure 13).
This compartmentalization of data allows one portion of the structure to be modified based

on the user’s selection.

OPORD_MISSION_DATA

SITUATION SUPPLY_SVCS

EXECUTION
MISSION l COMMAND_SIGNAL

Phase

Transition || Phase_Mission

Figure 13: Compartmentalized Data Structure

63

The OPORD_MISSION_DATA structure aggregates the information from all
editors into one structure. This approach provides the capability to easily change the data
parameters in one centralized structure. This area is ripe for additional enhancements; the
main danger here is overwhelming the user with data. The focus here is to request the es-
sential data (keep it simple) and let the Al reason about the context and situation, and mod-
ify those parameters as required. Currently, the maximum number of phases for a given
operations order is four. This limitation was a design choice. Most battalion-level opera-
tions orders never exceed four or five phases; this number can be changed through adjust-

ing the value of the array variable through the constant MAX_OPORD_PHASES.

5. Mission Selector/Evaluator

This module was not implemented due to the time constraints involved. The
shell about which the Mission Selector/Evaluator operates was successfully completed, but
the initial attempts to develop a distributed mission planner consumed the available time.

This submodule could be the subject of future work, as will be explained in Chapter VIII.

6. ModSAF Orders Generator

The ModSAF Orders Generator is also a prototype module. It makes extensive
use of the new LibTaskUtil library, which is designed to allow direct creation of specified
task frames without calling the task’s associated editor[SMIT Hb94]. This allows libraries
like LibOpord to generate a set of task frames and assign them to a unit, without human
intervention. The library was modified by J. E. Smith to allow multiple task frames to be
linked by enabling tasks. These modifications will become generally available in the next
version update of ModSAF (Version 1.3). A single reader file was modified to include
company-level tasks; the associated editors and libraries were passed to the taskutil_init

function during initiation of the operations order structures and editors.

64

D. TERRAIN REASONER DEVELOPMENT

One of the artificial intelligence submodules is partially complete. The terrain reason-
er is a mission-independent submodule that will reason about the terrain in its area of op-
erations and determine whether a particular route is “Slow-Go,” “No-Go,” or “Go” terrain.
Its current implementation is as a stand-alone module that accesses a text data base with the
same basic structure as the Compact Terrain Data Base. The terrain analyzer was imple-

mented using CLIPS Version 6.0, and requires approximately one minute execution time

for a three-kilometer square area. !

The terrain analysis module will use the posts from the Compact Terrain Database as
the map (with additional information as needed from the quadtree database) [STAN93],
and the boundaries as specified by the overlay in the “Paragraph One: Situation” editor to
generate a set of points. There is a one-to-one correspondence between the posts within the
boundaries of the overlay and the points for terrain analysis. The points are uniquely iden-
tified by an integer number and by their location on the map using UTM or x-y coordinates.

Once the points have been defined, the process of determining mobility corridors be-
tween them begins. This process requires a user-defined mobility threshold to assist in the
analysis of mobility corridors between the points. The default value is “smooth trafficabil-
ity.” The algorithm moves along each established point and analyzes the trafficability be-
tween the current point and each point adj acent to it. If the trafficability meets or is better
than the established threshold, then a new mobility corridor is established between those
two points. If a mobility corridor already exists, then the adjacent point is skipped, and pro-
cessing continues with the next adjacent point. This process is continued for every estab-
lished point. The end result is a network containing all points and their attached mobility
corridors (Figure 14).

Following the creation of the mobility corridors, avenues of approach (routes) are then

determined. Essentially, these avenues of approach attempt to move from a starting point

1. Using a Silicon Graphics Indigo XS, with 100MHz R4000 processor.

65

Posts from CTDB

. 3 0‘~ . 3 "o
. .
-~ e
-~ ,
g ’
- v - - ﬂ‘ 'ﬂ “~‘ .
’ [
[T .
4 \ -~
. \ -
Lo N] -~
1S o
\ ,’s‘ \ P s~
(3¢ N ~
3 PR -
. .
. e,
. .
. .
. .
1 _/ 4 I'
. .
. . Points

Routes

Mobility Corridors

Figure 14: Terrain Analysis Steps

66

(usually the attack position in an attack) to the objective. Knowing the starting point and
the ending point, the intermediate points (i.e. mobility corridors) are selected that offer the
best trafficability (or, a route that offers a user-defined trafficability range). In its current
implementation, an A-Star search is performed to determine the least-cost path from the
start point to the goal point.

The A-Star algorithm used the following heuristic:
f(n) = g(n) +h(n), where (Eq 6.1)

g (n) = traffic (p, q) xdist (Eq 6.2)

1, when ¢ ((route) 2c (mc))
traffic (p, q) = { ¢ (mc) —c (route) + 1, when (Eq 6.3)

¢ (route) < c(mc)

1, when trafficability is SMOOTH
2, when trafficability is EASY

c(x) = L (Eq 6.4)
3, when trafficability is MODERATE
4, when trafficability is DIFFICULT
2
h(n) = [J(currentx—goalx) + Jx 125.0 (Eq 6.5)
(currenty — goaly)

The POINT object is used to define the endpoints of the mobility corridors (See Figure
15). It includes all connecting mobility corridors that intersect at that point. Other slot val-
ues encapsulate information from the Compact Terrain Database.

The Mobility Corridor (MC) object is used to define a mobility corridor. It contains
the two points that uniquely identify thé mobility corridor’s location, and the terrain at-
tributes for that mobility corridor: slope, soil, vegetation, obstacles, overall trafficability,
and distance. If the terrain is impassable between a set of two adjacent points then no MC
is generated.

The ROUTE object is used to define a single route using a set of mobility corridors. It

uses the MC and Point objects to define its location. The ROUTE object contains a list of

67

points that comprise the route. It also contains the overall trafficability of the route, and the
distance. .

Terrain analysis in this case is the consolidation of four fuzzy sets into a single fuzzy
set. The input sets are Terrain Slope, Terrain Soil Type, Terrain Vegetation, and Terrain
Obstacles. The output set is Terrain Trafficability. Essentially, the rule set attempts to de-

termine terrain trafficability based on the state of membership of the other four sets.

POINT ‘ MC
HAS point-number point-1 -- POINT
(two or more)
. HAS sy
ROUTE location (zero to many) point-2 -- POINT
mob-corrs: fn?lultxs]ot elevation TT—0 slope
value containing MC .
soill soil .
route-trafficability soil2 ‘IE vegetation
vegetation (obstacles
i obstacles two)
distance trafficability
mobility_corridors: a multi-)
slot value containing zero to distance
many MC

Figure 15: Terrain Analysis Object Hierarchy

E. SUMMARY

The distributed design strategy was more involved, but was probably due to faulty
methodology than the strategy itself. The integrated design strategy resulted in the rapid
development of a proof-of-concept prototype. While this strategy is the simpler of the two,
it may be rendered unusable due to the potential resource requirements of the artificial in-
telligence modules. The prototype terrain reasoner, written in CLIPS, requires 60 seconds
to determine a single route using A* search on a three kilometer by three kilometer terrain.
Expanding this to cover an “average” battalion area of interest of five by five kilometers
could easily triple the time required. Additionally, this would require heavy use of system
resources, which may not be available due to the demands of ModSAF. Combining this

submodule with other expert system submodules may make the integrated design strategy

68

unfeasible, however, its advantages are the ability to rapidly develop and test a module
within the framework of ModSAF. In Chapter VII, the results of the development process

are presented.

69

70

VII. RESULTS OF WORK

- The results of the mission planner development are shown in the following diagrams.
They depict the creation of an M1 tank company, the operations order editor screens, and
the final results of the operations order process -- namely, a set of ModSAF task frames.
The operator can select from four basic missions: Attack, Defend, Move (Road March),
and Assembly Area. The transitions between phases can either be a timed duration (such
as 45 Minutes from assignment of the order, or end of the previous task), a maneuver graph-
ic control measure selected (or created) from the overlay, or to continue once the current

task is complete.

A. SYSTEM PERFORMANCE
Since no actual reasoning process is occurring, there is virtually no delay from the as-
signment of the operations order and its conversion to the set of ModSAF unit tasks. The
selection of which set of ModSAF tasks sets to represent each operations order phase was
arbitrary. Generally, the Mission Planner attempted to mimic the actual company opera-
tions by the decomposition of the company phase into a reasonable set of ModSAF tasks.
The ratio of ModSAF tasks to assignable company operations order phases varied from
three ModSAF tasks to one phase to two ModSAF tasks to one phase, for an average of 2.5
tasks to one operations order phase. Additionally, mission selection was significantly eas-
ier with the company operations order, as the number and types of choices were extremely

limited for the human to select.

B. EXAMPLE MISSION ASSIGNMENT

In this example, a tank company is created and assigned a set of company operations

order tasks. The operations order is included from the print command as a reference.

71

1. Unit Creation
The unit must first be created by selecting the unit editor icon from the menu bar
on the left of the screen (Figure 16). The unit is placed on the map with the desired forma-
tion, orientation, and other data modified as required. The unit must be a ground maneuver
company, such as an Abrams (M1) tank company, or a Bradley (M2) infantry company.
Company teams consisting of platoons of both tanks and infantry fighting vehicles can also

be selected.

2. Unit Selection
Once the company-sized unit is in place on the map, it may be selected using the
mouse. The top-level organization icon must be selected to inform ModSAF that a compa-
ny-level operation is to occur. Once the unit has been selected, a Unit Operations editor
will appear, with the unit organization and an execution matrix (Figure 17). An “Opera-
tions Order” pushbutton can be found in the lower left corner of the editor. Selecting this

will bring up the Operations Order base editor (Figure 18)

3. Operations Order Preparation

The operations order may now be produced. It may be completed in any order;
currently the Paragraph One, Two, Four and Five buttons will allow for the input of data,
but little is required to convert the Paragraph Three phases to ModSAF tasks. Figure 19
shows the “Paragraph Two: Mission” editor.

The order may be printed at any time to determine its status in preparation. It
will print to the window from which ModSAF was first initiated. The format of the oper-
ations order closely follows that of an actual five paragraph field order. Figure 20 shows
the sample operations order once all information has been completed, while Figure 21

shows the completed Operations Order base editor.

72

4. Mission Assignment
Assigning the mission will cause a termination of the operations order editor,
and a resumption of the unit operations editor. The conversion of the operations order in-
formation into a set of ModSAF tasks and enabling tasks can now proceed. The company
now has a set of orders, and will execute them according to its current state and the enemy

situation (Figure 22).

C. SUMMARY

The mission planner simplified the assignment of company-level tasks. The mission
planner can produce a more detailed set of orders in less time using the Operations Order
editors than can a skilled ModSAF operator using the Unit Operations editor’s execution
matrix. On the average, it requires approkimately one minute to enter a four-phase compa-
ny mission using the mission planner; it requires at least twice that time using the Unit Op-
erations execution matrix.

These results, however, belie the true potential of the mission planner’s capability to
develop realistic and detailed missions for company-level forces. This prototype was sim-
plified by implementing only company-level tasks. These tasks are not very realistic; ap-
parently ModSAF Version 1.3 and later will implement company-level tasks in a more de-
tailed and realistic manner. The fact remains that the platoons do not communicate with
each other, and most, if not all, tasks are currently homogeneous in nature. This means that
all the platoons are all doing the same task, with little or no coordination and direction at
the company level.

This does not mean that the implementation of AAFSMs preclude unit planning and
coordination. A parallel work has accomplished this within the ModSAF framework of
AAFSM development at the company level [MCAND94]. However, the coordination and
communication requirements involved make this approach very cumbersome and prone to

the insertion of anomalies.

73

The lack of real-time coordination among subordinate elements of a company is be-
yond the scope of this work. However, the use of company-level tasks do little to make the
actions of the company more realistic; in fact, just the opposite is true. A viable argument
could be made in favor of a different approach at the company level to the use of a mission
planner of some form that would select platoon-level tasks and assign them in a coherent
and intelligent manner to a company-sized unit to accomplish a particular mission. This
would take advantage of the relative strengths of the AAFSM at the platoon and lower lev-
els to efficiently model the individual entities; while the mission planning aspects that be-

gin at company-level can be performed in another manner.

74

1031p7 :o:.wwuo snup) JVSPOIA 97 3anS1]

?:.5 m:o«ob uoﬁ_c.u 5&5 uuﬁsmﬁ un‘=§ %o 8 Euu_ w® m:ﬁovuv -
snotasad 01 qe | -PNYS 1%U 0] q&], SN[eA & 133U 0) PO B U0 DI 1031pg)

6sWsn | 00vTI)
evessmisn | ¢

TY9SpIISA | emimm Phues & uadig 20MON

L6661} TR0g 3 - /. -
” ~

Spunal £ SUopD SARIT 4y | | BURURDUN] ’ N
suonnmy puv jon,; LBojopoyiapy axuazadeoy i|

Aurauyg <)
.wo_u.m: ssodu) £ S * = = w TS

szss mo%. A”T an o [~ ot e v s uonwuLo] qng apmg i1
T seadag & %sszz%m : £ Bpop :ﬂ Aweduop TN |

uon>ang uonpaoy udig jpoy uonpuLo,y adk] «.Eb.

B3R UI310S 135 01 I[PPTM Sep pue Yoo Ean PUNCe 10 Weoz 01 BN Yo Quted punote Uf WI00Z 03 I[PPRM XIS W00Z

FRUR TG

%%wv
w =

,

75

{ File

Map Scale

Map Features Show As

507

> b7
N
N w
1 AN
/

-~

I8 77\@

Zoom: click middle to zoom in around point; click right to zoom out around point; click and drag middle to set screen area

Unit Operations

Done

A

[Edit Assigned Mission
1 Edit Pending Mission

Operations Order | .

“ >nn_gg~nw~o= _ 4

O 11
RIE RO W St atus for Unit 2

(selecting anitem to

Unit Operations Editor: Use execution matrix to assign commands, or choose a different unit from the map
edit will be resumed when finished unit operations)

s o O ot O R T

Figure 17

ron.w._ mo?n

o

by

76

e e e e Y S o S e R S

Unit Operations Editor -- Initial View

MIIA [eniu] -- J0)IpH J9PIQ suonerdd() :gf danS1g

i %E MY Eeu %5 uﬁbha 2250043 J0 %5&58 udjsse 0) Xpgeuwr nousuoxu 38, D Lsam unovahmo [N
IV SIY) 0] J9PIQ suonessd() ue iU

By | woptmyusgg > vrog 0 | wopduusg > wog O | wopbua s O vyoo O
atepy O 2SI Ly dopg O RERILY Ly ARy O QWA Ly AL

weafaq > opapen O puafaq > apapug & puajaq & wpip g (> puafeq ¢ IS BRUTNE) SR
Yoz £ amgua) & yomny O anaEe) & Yy O ey 45 gy ¢ 1. HOSDS 2iag iy mind,
b asvyYd uoyrsunil g asvid somsun{l 7 asvyd uomsunyy pesvyg il YOISSTI *Z AR S— ﬁam%z% i

dOPLL) suOPBINID

uoproaxy i ydoomg ||| . LOHHIS {] DD

©3TR US3AIOS 135 03 I[ppput Sep pue op Hutod punoe e Weoz 03 S SR “ujod PUnore Uf Kooz o) SPPI YOI w007

T SR

{
T
A
s wgz :l, ,/IMN//Wn

feedg smoygy SV A0YS soImEa] %2

A\

> 14

71

iteY

AN
X .///W// N {
/w/ﬁ// U/V/ U/// A \ m/m/

Mission Parent Unit Name Parent Mission Execution Time Battalion Start Point
""Done _ |TF6-40 AR/Berlin Bde i€ Anack < Defend | <» Now {Click Here for Map Input |

I

m Jez:| s Move < Halt < On Order. iCancel Choice |
‘ Abort PN - :

_ > Later Battalion End Point
Minutes to Execution Click Here for Map Input |
LA

T , i{Cancel Choice |
~ rd

[“ w
80.00 Minutes

N

bt
Generate an Operations Order for this Unit.
Unit Operations Editor: Use execution mauix to assign commands, or choose a different unit from the maj

(selecting an item to edit will be resumed when finished unit operatons)

Figure 19: Paragraph Two: Mission Subeditor

78

1IPIQ suonesdd(paulg sjdumes g7 2and1

lapean] uooje|d puooasg
lspean uooje|d 1sii4
iapeaT uooje|d pliyy
Jepuewwo)
S| puBWIWOYD JO Uey)H
‘pueWIWOg ‘q
199413 Ul 1030 Waung
‘leubig e
jeubis p puewwo) :g ydeiBered

8./08S04S01
JPUD 1N :uoleoo] Jsjua) suofeladp Boq uiwpy
¥8.¥8SD4S01 PUD WLN :UoiEed0T UoNElS ply Uolieleg
S9OIAIBS ‘g
#8L08504S01 PO LN :uoijeso julod Alddnsay |eng
08.28SD4S01
PUY LN suonedoT ulod Alddnsay uounwiwy
:sjulod Ajddnsay
‘00°001 :peo] dlseq [end
‘00°001 :peO} diseq uonlunwiwy
puey uo sajddng
Aiddng e
Moddng soinies ¢ ydeibesey

S08¥8SDAS0L PUDH 1N Uoleso| je ealy Alquassy AdnooQ
‘anuiuod :p aseyd o) g aseyd wol) uonisues |
¥ aseuyd
S08E.SD4S01 PUD LN ulod eses|ay 1e pug
$8.29504S01 PUD W1N ulod HeIg ‘ydlew peol e jonpuo)
“1opio uo g aseyd o0} g eseyd woly uojsues]
:g aseud

$6/2¥S04S0L PUD NLN Hwi ybiy
68.€€S0D4S01 PUD INLN Wi ye
€6.8£504S01 ‘PUD LN PBIEJ0| dH 1 8Y) Uo pajusiio
88/5¥SDAS0} PUD WLN uolisod aeq pusjeg
“1oplo uo :g aseyd o0} | eseyd wol} uoljisuel}
‘g 9seyd
88/S¥SD4S0L PUD WLN ‘@And(qo aztes o}
S8./¥SD4S01
U W1N uoneso| ‘uopisod yoele woj jnessy .
28/155D4S01 PUD WLN sixe Buofe yoeny
'} eseyd
:Auedwon v -- suononisu| pajelaq °q
'saseyd ¢ Ul pandaxa aq ||Im UOISSHA SIUL
uonesado ayi jo 1desuo) ‘e
uopnoax3y :g ydeibeied

88.5¥SD4S01 pHD W1N ulod 0}
$8229504S0} PUD LN uod wolj ‘Mou woly senujw Gp
s)oeje apg ulieg/dy Ov-9 4L

“uoissiiy g ydeibesed

§6.£6504S01 PUD WiN ul0d 18uiog jseayloN

S6/2¥S0D4S01 ‘PUD 1N ulod 18Ul0) 1SeMYLION

L£2S65D4S01 pUD INLN [ulod Jaulo] jseayinog

€4/9%S04S01 PUD LN :Uoljed0T JsuIo) Isamyinog
‘(12as1 Auedwo)) i1sals)y| jo BaIY O

2 'S9DIYaA Jaul0 Jo JequinN
¥ :S.Adl JO JoquINN
1 Syuel jo JaquinN
09 :1sale| jo
BAlY U SWIISAS 1BqUI0) Ajpusii4 JO Jaquinu [elof
‘S82104 Ajpusii4 'q

£8 :1saio| jo
ealy Ul SwalsAg jequon Awau3 jo Jaquinp [eloL
"$8010) Awdug e
uofen)is :} ydeibeled
6G€/1/1 4aquinN aseqeleqg Od
v 10} 18pIO suoiesado

79

Special

Y72 N NN = Y o M 2N

s NS

/ -~
51 52 J NMNER 55 .56 57 % 5 <59, 6on

Zoom: click middle to zoom in around point; click right to zoom out around point; click and drag middle to set screen area

Para I: Situation ||| Paragraph3: Execulion
Para 2+ Mission 1 Phase 1 Transition Phase 2 Transition Phase 3 Transition Phase 4
\Para #: Service Support | O Attack > Continue s Aitack <) Continue v Attack > Continue . v Attack
Para 5: Command & Signal| < Defend <, On Order > Defend <> On Order < Deferd <y On Order < Defend.
o Move < Cirl Measure v Mave S CtriMeasure | € Move < CtriMeasure & Move
v Occ A4 < Msn Complete | <y OccAA <> Msn Complete | <y OccAA <> Msn Complete | < OccAd
RS C—— T
| R
Generate an Operations Order for this Unit.
Pnit Operations Editor: Use execution matrix to assign commands, or choose a different unit from the ma) (selecting an jtem to edit will be resumed when finished unit operations)

Figure 21: Completed Operations Order Base Editor

80

UOISSIJAl paudissy dunosgey 1031pH suonerad() jrup) :zz 2ansig

nezado Jun voﬁ_q.u USYAL PAUMSIL I [[14A 1P 01 W3] Ue BURDI[S)
dew 3y woy JIUN JUSIGHIP & 9500YD 0 ‘SPURTILIOD USISSE 0) XLIBW UORNIAXS asy) :103Ipg swonessd() Jun

pe33ods ssIPIY=2A ON :UOTIDDISQ AlLUd
ydy sy Jo psads poubisse ue je UOTIEWIOI SHPOM B UT I¥3 SIKY SUIT o3nod Putmor1od :8A0H

¥ 2TUn I10F Sniels Eovuo_.umuauuww

_ UO[SSTIA] uSIssy i K

{ Xplg suocneradp
uolssy Supuad apd 3
UOISSIIAl pRuBissy upy

B3Te UI3II$ 135 01 J[PPIMt Sesp pue iR “ujod puncIe N0 Wooz 03 331 ¥oIR “ujod punore Uf WooZ o) S[PPRU YOO W00

A N
ag / \p m/M///

i olp ¥i
9G—7~N 66 N\ S\ ~eg’ 6L sl |

ofopAld [ereds simoyy 90104 [e20] sy moyg soumeag dely s[eosdey o[

81

82

VIII. SUMMARY AND CONCLUSION

The development of automated planning systems for computer generated forces is still
an emerging field. While much work has been done with computer generated forces in
designing low-level behaviors and reactions, little has been done to develop and implement
a command and control and mission planning architecture; these functions remain the
domain of a human expert.

The intent of this mission planner is to abstract the human controller from the
tediousness of planning the minutiae of individual vehicles and platoons that comprise a
company-level force. The user assumes the role of the Battalion Task Force commander,
and the mission planner assumes the role of a company commander. The Task Force
commander issues a version of the US Army’s five paragraph operations order (OPORD)

to a subordinate company, which are represented as ModSAF computer generated forces.

A. MERITS OF THE STRATEGY

While incomplete, the preliminary results of the incorporation of this tool with
ModSAF are promising. The average translation of a company operations order phase to
a set of ModSAF task frames is 2.5 task frames per operations order phase. Additionally,
the mission selections for the compény operations order are much simpler, as it is assumed
that the artificial intelligence submodules will have the capability to reason about the
context of the mission assignment and arrive at similar conclusions. The modularity of the

application interface allows for relatively simple insertion and deletion of submodules.

B. SUGGESTED IMPROVEMENTS

The most obvious improvement that could be accomplished is the development of an
actual mission planning reasoner. The use of the Rational Behavior Model in computer

generated forces command and control has been extensively discussed here, but not fully

83

implemented. Therefore a full evaluation of this approach cannot be performed until a
limited set of the artificial intelligence submodules have been written and integrated with
the system. The results of this evaluation may result in the discarding of the integrated
development strategy, because the current ModSAF system requires a large amount, too.
If the distributed development strategy is re-visited, one should ensure the knowledge in
detail of each library in the ModSAF system. Only then will there be a significant advance

in the reuse of ModSAF code outside the ModSAF application environment.

C. RECOMMENDATIONS FOR FUTURE WORK

The most pressing need is the development of the Mission Selector/Evaluator module,
along with the modification of the current application to support this module. Any artificial
intelligence language could be used, however careful consideration must be made of the
required data input and output formats. If developed using the integrated development
strategy, then performance measures should attempt to determine if there are any
measurable performance degradations by ModSAF or by the application. If so, then the
distributed strategy needs to be revisited.

The development of a set of heuristics to reduce the search space is needed. This
should be developed independently of any language, yet be understandable so that they
may be implemented. Strategic-level adversarial planners must use heuristics because the
complexity levels without them approach NP-complete. This mission planner shares those
traits.

With the increase in complexity levels and capabilities, a single human computer
generated forces operator can no longer control large numbers of high-resolution forces
during a major exercise. Instead, the user must allow the computer to do the low-level
reasoning, providing guidance and information as required. This mission planner
prototype could assist the human by providing a framework about which future artificial

intelligence research can be conducted

84

[ARMY385]

[ARMY88]

[BRAU93]

[BYRN93]

[CALD93]

[CER92]

[CERa%4]

[CERDY94]

[DMSO093]

[DURK94]
[ELSA91]

LIST OF REFERENCES

US Army Field Manual 101-5-1, Operational Terms and Graphics,
Headquarters, Department of the Army, October 1985.

United States Army, Field Manual 71-1, The Tank and Mechanized Infantry
Battalion Task Force, Headquarters, Department of the Army, October 1988.

Braudaway, W., “A Blackboard Approach to Computer Generated Forces,”
Proceedings of the Third Conference on Computer Generated Forces and
Behavioral Representation, University of Central Florida, Orlando, FL,
March 17-19 1993, pp 11-20.

Bymes, R. B., Nelson, M. L., Kwak, S.,McGhee, R. B., Healey, A. J.
“Rational Behavior Model: An Implemented Tri-Level Multilingual
Software Architecture for Control of Autonomous Underwater Vehicles,”
Proceedings of the 8th International Symposium on Unmanned Untethered
Submersible Technology, University of New Hampshire, Durham, NH,
September 27-29 1993, pp. 160-178.

Calder, R. B., Smith, J. E., Courtemanche, A. J., Mar, J. M. E., Ceranowicz,
A. Z., “ModSAF Behavior Simulation and Control,” Proceedings of the
Third Conference on Computer Generated Forces and Behavioral
Representation, University of Central Florida, Orlando, FL, March 17-19
1993.

Ceranowicz, A. Z., “ModSAF Programmer’s Guide,” Naval Research
Laboratory, Contract No. N00014-92-C2150, 1992.

Ceranowicz, A., “Modular Semi-Automated Forces,” Modular Semi-
Automated Forces: Recent and Historical Publications, Loral ADS
Document No. 94007 v. 1.0, 1994, pp 1-9.

Ceranowicz, A., “ModSAF and Command and Control,” Modular Semi-
Automated Forces: Recent and Historical Publications, Loral ADS
Document No. 94007 v. 1.0, 1994, pp 11-27.

Defense Modeling and Simulation Office, “1993 DMSO Survey of Semi-
Automated Forces,” DMSO Summary Report, 1993.

Durkin, J., Expert Systems Design and Development, Macmillan, 1994.

Elsaesser, C., MacMillan, T., “Representation and Algorithms for
Multiagent Adversarial Planning,” The MITRE Corporation, Document #
MTR-91W000207, 1991.

85

[GIARR93]

[LEE94]

[LORAa93]

[LORADBI3]

Giarratano, J. C., CLIPS User’s Guide, CLIPS Version 6.0, Lyndon B.
Johnson Space Center Information Systems Directorate, Software
Technology Branch (NASA), 1993.

Lee, J. J., Fishwick, P. A., “Simulation-Based Planning for Computer
Generated Forces,” Proceedings of the Fourth Conference on Computer
Generated Forces and Behavioral Representation, University of Central
Florida, Orlando, FL, May 4-6 1994, pp 451-460.

Loral ADS, “ModSAF Software Architecture Design and Overview
Document,” 1993,

Loral ADS, “A Modular Solution for Semi-Automated Forces -- ModSAF,
An Overview,” Loral ADS Briefing Slides, 1993.

[LORAL94] Loral ADS, “ModSAF User Manual, Version 1.2,” 30 June 1994.

[MCANDOY94]McAndrews, G., “Autonomous Agent Interactions in a Real-Time

[MOHN94]

[PARS94]

[PETTY94]

[PRATT94]

[SALI93]

Simulation System,” Master’s Thesis, Naval Postgraduate School,
Monterey, CA, September 1994.

Mohn, H. L., Pratt, D. R., McGhee, R. B., “Meta-Level C2/Mission
Planning Tool for ModSAF,” Proceedings of the Fourth Conference on
Computer Generated Forces and Behavioral Representation, University of
Central Florida, Orlando, FL, May 4-6 1994, pp 461-472.

Parsons, J. D., “Using Fuzzy Logic Control Technology to Simulate Human
Decision-Making in Warfare Models,” Proceedings of the Fourth
Conference on Computer Generated Forces and Behavioral Representation,
University of Central Florida, Orlando, FL, May 4-6 1994, pp 519-529.

Petty, M. D., “The Turing Test as an Evaluation Criterion for Computer
Generated Forces,” Proceedings of the Fourth Conference on Computer
Generated Forces and Behavioral Representation, University of Central
Florida, Orlando, FL, May 4-6 1994, pp 107-116.

Pratt, D. R., Bhargava, H. K., Culpepper, M., Locke, J., “Collaborative
Autonomous Agents in the NPSNET Virtual World,” Proceedings of the
Fourth Conference on Computer Generated Forces and Behavioral
Representation, University of Central Florida, Orlando, FL, May 4-6 1994,
pp 177-186.

Salisbury, M., Tallis, H., “Automated Planning and Replanning for
Battlefield Simulation,” Proceedings of the Third Conference on Computer
Generated Forces and Behavioral Representation, University of Central
Florida, Orlando, FL, March 17-19 1993, pp 11-20.

86

[SILIC92] Silicon Graphics, IRIS Indigo Owner’s Guide for the R3000 and R4000
Models, Silicon Graphics, 1992.

[SMITHa93] Smith, J. E., “LibPO -- Persistent Object Library,” Programmer’s Reference
Guide, ModSAF Documentation, 1993,

[SMITHbI3] Smith, J. E., “Compact Terrain Database Library User Manual and Report,”
Programmer’s Reference Guide, ModSAF Documentation, 1993.

[SMITHc93] Smith, J. E., “LibEditor,” Programmer’s Reference Guide, ModSAF
Documentation, 1993.

[SMITHAd93] Smith, J. E., “LibTask,” Programmer’s Reference Guide, ModSAF
Documentation, 1993.

[SMITHe93] Smith, J. E., “LibUnits,” Programmer’s Reference Guide, ModSAF
Documentation, 1993.

[SMITHf93] Smith, J. E., “LibSAFGUIL” Programmer’s Reference Guide, ModSAF
Documentation, 1993.

[SMITHa94] Smith, J. E., Courtemanche, A. J., Coffin, D. A., “ModSAF 1.2 Release
Notes,” ModSAF Documentation, Loral ADS, 1994.

[SMITHb94] Smith, J. E., “LibTaskUtil,” Programmer’s Reference Guide, ModSAF
Documentation, 1994.

[STAN93] Stanzione, T., Smith, J. E., Brock, D. L., Mar, J. M. F,, Calder, R. B,
“Terrain Reasoning in the ODIN Semi-Automated Forces System,”
Proceedings of the Third Conference on Computer Generated Forces and
Behavioral Representation, University of Central Florida, Orlando, FL,
March 17-19 1993.

[STEE90] Steele, G. L., Common LISP, 2d Ed., Digital Press, 1990.

[STRO91] Stroustrup, B., The C++ Programming Language, 2d Ed., Addison-Wesley,
1991.

[ZADEHG65] Zadeh, L. A., “Fuzzy Sets,” Information and Control 8, 1965.

[ZADEH79] Zadeh, L. A., “A Theory of Approximate Reasoning,” in Hayes, J. E.,
Michie, D., and Mikulich, L. I. (Eds.), Machine Intelligence 9, Chichester,
England: Ellis Horwood Ltd., 1979.

87

88

APPENDIX A. OPERATIONS ORDER DESCRIPTION AND
EXAMPLE

The following is a brief description of the composition of the US Army’s five para-
graph field order. Additionally, a description of maneuver overlays is included, as the two
are very closely linked; in most circumstances the maneuver overlay is an integral part of

the overall orders package.
A. OPERATIONS ORDER

1. Paragraph One: Situation
This paragraph is further subdivided into two parts, and generally sets the context

in which the rest of the order is to be analyzed.

a. Enemy Forces

The enemy situation comprises the first part, and should be the best infor-
mation available to the unit at the time the operations order is prepared. Naturally, this in-
formation can be rather vague or misleading, as it depends upon the ability of the friendly
forces to collect, analyze, and disseminate intelligence information in a timely manner. In-
cluded in the enemy situation is a listing of the location and disposition of all known enemy
units within the area of influence (that area which can influence the outcome of the battle,
either by an enemy unit’s physical presence, or capability to directly affect the accomplish-

ment of the mission).

b. Friendly Forces
The friendly situation is expressed in terms of a brief mission statement of
equal/higher units to the unit’s front, rear, left, and right as oriented on the enemy forces.
If there is no visible “front,” then often the cardinal points of the compass (north, south,

east, west) are used.

89

2. Paragraph Two: Mission
This paragraph contains a general, yet concise, statement of the unit’s mission.
In these terms, this refers to the mission of the battalion. All mission paragraphs are usually
very short -- definitely no longer than four sentences. It will answer “who, what, when,

where, and why” in a concise manner.

3. Paragraph Three: Execution

As the “meat” of the order, this paragraph is the most complex.l This paragraph

is divided into several major subparagraphs.

a. Commander’s Intent

The Commander’s Intent contains a verbatim copy of the higher command-
er’s intent, and a second paragraph with the Battalion Commander’s intent. This is an un-
formatted, concise statement of the commander’s overall intent, similar to the following:

Speed is of the essence in getting to Objective Red. I want to move quickly, by-
passing but reporting pockets of enemy resistance in order to inflict maximum damage
and surprise on the enemy. I want the scouts to focus on possible enemy counterattack
avenues, and report to me immediately if they see large enemy armored formations.
When we get to Objective Red, I want the companies to destroy anything and anyone
who resists. All command and control centers will be destroyed, and logistic dumps
will be secured if possible; destroyed if we cannot safely hold them. Expect a strong
enemy counterattack to our bold move. If the deep attack mission by TAC Air is suc-
cessful, then we will be ordered to exploit that success by mopping up any organized
resistance to the north of Objective Red. Here, we need to move deliberately and care-
fully, lest we fall into an anti-armor ambush. Keep all our supplies tucked in close to
our formation; we cannot afford to be separated from our resupply of ammo and fuel.

b. Concept of the Operation

This subparagraph contains a general description of how the battalion will

set about accomplishing its mission. Its intent is to provide the subordinate commanders

1. In longer orders, the subparagraphs will refer the reader to a set of annexes and appendices. Thus,
while the order itself may be short, the annexes can be many pages in length. Of course, such a de-
tailed order is frowned upon for use at relatively low levels of the command hierarchy.

90

with a framework to understand how their actions will interact and support the battalion’s

mission.

¢. Instructions to Subordinate Units
The next set of subparagraphs are detailed instructions to each subordinate
unit by name. In a battalion operations order, this would include each company, separate
platoon, and major staff section that comprise the battalion/task force. Each of these para-
graphs will contain specific information that usually pertains to just that company/section;
the reader will also need to refer to the operations overlay for additional information (such

as locations of objectives, phase lines, boundaries, etc.).

d. Coordinating Instructions
The last subparagraph of the Execution paragraph, this subparagraph con-
tains a listing of general tasks that are applicable to two or more elements of the task force
[ARMYS88]. This does not include the command and signal items, which are enumerated
in Paragraph Five. The items that are listed in this subparagraph generally relate to the co-
ordination reciuired between the subordinate units and the task force, and other details that

differ from the Standard Operating Procedures (SOP).

e. Execution Paragraph Summary
A subordinate commander need only look in two places for a listing of tasks
that pertain to him -- the specific unit instructions, and the Coordinating Instructions. The
Mission, Commander’s Intent, and Concept of the Operation subparagraphs help him un-
derstand how his mission fits within the battalion’s mission. Since this format is followed
throughout the Army, less time is required to quickly determine the specified and implied

tasks for a particular unit.

4. Paragraph Four: Service Support

This paragraph is further subdivided into personnel support and logistics support

required to accomplish the mission. Typically, these paragraphs contain information con-

91

cerning personnel replacements, casualty reporting, logistics resupply, and sustainment op-

erations.

5. Paragraph Five: Command and Signal
This paragraph is further subdivided into two subparagraphs, as denoted by its
name. The Command subparagraph details the chain of command so that it is clear who as-
sumes command should the leader be rendered ineffective.The Signal subparagraph details
the communications arrangements -- callAsigns, frequencies, and special event signals such

as the use of colored smoke or pyrotechnics.

B. THE OPERATIONS/INTELLIGENCE OVERLAY

The overlays are an essential part of an operations order, in that it is significantly eas-
ier to display certain information such as unit locations, control parameters, and operational
details in a graphical manner as it relates to a particular point in the world. As a result, the
operations and intelligence overlays serve to effectively portray information in a timely
manner, and the text portion of the order serves to lend detail and meaning to the graphics.

The military symbols and graphic control measures have specific meaning in their
own right. Each graphic control measure has a name, and a definition associated with that

name (Figure A-1) [ARMY?85].

92

[SSATAI V] J9)je ‘sjoquuisg [onyuo)) d1yders) om], Jo uoniugdy(pue uosireduwo)) spdurexyy -y 2ansi |

*S$OBNRINUNOD

ur pue suonjerado ANJIQISIA PSITWI] UL PIAJOAUI SHUN
Io syoene YS1u Sunonpuod sjrun ANUeul Yym paje
-190sse SI A[Jensn J] *9}nol pauSIsse ay} JJo JoANsuLW 0}
991J 10U 9IE SJIUN PUB ‘OOUBAPR JO SIXE 9} UL} SINSBOW
[OIIUOD SATIOLIISOI 9IOUW B ST YOBIIR JO UONIAII(T 'S[d
-AQ3] JoMO] PUR UOI[BIIRq J& AJ[eULIOU ST I ‘Pasn J] "MO[[0]
[1IA 9910J 9y} Jo Apoq urew 9y} JO YOe)je Uret oy} jey)
9JNOI IO UONIIIP JY10ads V7 = YPBPY JO UorddI(f

‘sasodand asay) 10J pougisse a1e

AJJewIou $9A1393(q0 SJRIpaWIAU] ‘SUOTIBIO] dY1oads
WI01J $9210§ AUISUS JO 95UBIBI[O JY) IO UIB1I9) JO [oX)
-U0D 1) }991IP O Pasn JOU SI IDUBAPE JO SIX® Uy ‘passed
-Aq oq Aewr juswysidwoooe uoissiw 9zipredoaf 10
AJINo9s UIJLAIY} JOU Op JBY) S9210] AWRUF JSPUBLILIOD
Iay31y ayj jo jeaoidde Jorid oy syrun juadelpe jo
JOANSURW Y} YIIM I0JISJUI JOU JSNUI IDUBAPE JO SIXE
pauSIsse ue WoIj SHONLIAJ(] "2A1N23[qo Jy3 pue sixe oy}
UO PIJUSLIO SUTBLUAI JIUN aY) papraoid QouBApE JO SIXE
ue Jo opIs YL 03 sa1y Suntoddns pue s9010J S1Y ToA
-NauBW AW JOPUBLILIOD Y "SUOIJEIO] JO SA119S pajeus]
-$9p © 10 ‘speol Jo dnoi3 & ‘peol B us)jo SI pue SIxe 9y}
pauBisse 9010J 2y} JO 9ZIS 9Y) 10J 9[qeIINS UIRIId] SMO]
-103 3] "9010F Awrau? ue jo juatdojeaus Jo seare dn-jjinq
JO 9ouBpIOAE SEB JONS ‘UonU)UI S, ISPUBLITLOD B SAeH)
-10d A[reorydeis joquuAs 20UBApE JO SIXE UY "AWAUS 9y}
pIemo) SpUslX? yorym jonuod jo sasodind 10j pausis
-S® ‘90URAPE JO 9)NO01 [BISUD3 Y = JDUBAPY JO SIXY

J}oeny JO uUondaIqg

Q0UBADY JO SIXY

93

94

APPENDIX B. FUZZY SET MEMBERSHIP

The following figures are membership graphs for the fuzzy sets defined in
Chapter V. These graphs contain fit vectors that help ensure that the entire range of values
of the fuzzy set is defined by a modifying adjective. This ensures that a fuzzy value will
result from any particular “crisp” value, as long as it falls within the range of values. For

convenience, Table 7 is repeated below as Table B1.

Enemy Forces Intelligence Tr(?ops Ti.me Terrain
Accuracy Available Available Slope
Impotent Erroneous Ineffective None Level
Weak Inaccurate Weak Short Gentle
Parity Questionable Company Moderate Moderate
Minus
Strong Accurate Normal Long Steep
Overpowering | Reliable Reinforced Extended Precipitous
Terrain Soil Terrain Terrain Terrain Success
Type Vegetation Trafficability Obstacles Prediction
Improved Open Impassable Zero Zero
Normal Thin Difficult Light Problems
Difficult Moderate Moderate Moderate Maybe
Impassable Thick Easy Dense Good
Dense Smooth Impassable Outstanding

Table B-1: Linguistic Variables and their Modifying Adjectives

Each figure contains a small table that numerically depicts the starting range and

ending range of each modifying adjective. The potential y-values are O or 1; the x-values

denote the ranges.

95

Impotent Weak Parity Strong Overpowering

| N\

Membership
Value
0
<1:10 1:1 >10:1
Strength Ratio (Enemy:Friendly)
Impotent Weak Parity Strong Overpowering
X Y X Y X Y X Y X Y
1:1 1 1:5 0 1:3 0 1:1 0 3:1 0
0 133 1 L1 311 51 1
LS5 10 3310 51 0 10 1
1:3 0 1
Figure B-1: Fuzzy Sets on Enemy Forces
Errongous Inaccurate Questionable Accurate Reliable
Membership
Value

0

0% 50% 100%

Percentage of Accuracy
Erroneous Inaccurate Questionable Accurate Reliable

X Y X Y X Y X Y X Y
0 1 30 0 40 0 60 0 80 0
30 1 40 1 50 1 70 1 90 1
40 0 50 0 70 0 90 0 100 1

Figure B-2: Fuzzy Sets on Intelligence Accuracy

96

Ineffective Weak Co Minus Normal Reinforced
1 Z
Membership
Value
0
0 12 24
Number of Combat Vehicles Available for Mission
Ineffective Weak Co Minus Normal Reinforced
X Y X Y X Y X Y X Y
0 1 0 8 0 10 0 14 0
5 1 1 10 1 14 1 18 1
6 0 10 0 12 0 18 0 24 1
Figure B-3: Fuzzy Sets on Troops Available
None Short Moderate Long Extended
1
Membership
Value
0
0 12 24
Preparation Time Available
None Short Moderate Long Extended
X Y X Y X Y X Y X Y
0 1 0 0 4 0 8 0 12 0
1 0 4 1 8 1 12 1 18 1
8 0 12 0 18 0 24 1

Figure B-4: Fuzzy Sets on Time Available

Level Gentle Moderate Steep Precipitous
1
Membership
Value
0
0 15 30
Slope in Degrees
Level Gentle Moderate Steep Precipitous
X Y X Y X Y X Y X Y
1 0 0 3 0 8 0 14 0
2 0 3 1 8 1 14 1 21 1
6 0 14 0 21 0 30 1
Figure B-5: Fuzzy Sets on Terrain Slope
Improved Normal Difficult Impassable
C
Membership
Value
0
0 4
Terrain Soil Types (1 through 4)
Improved Normal Difficult Impassable
X Y X Y X Y X Y
0 1 1 0 2 0 3 0
1 1 2 1 3 1 4 1
2 0 3 0 4 0

Figure B-6: Fuzzy Sets on Terrain Soil Type

98

Open Thin Moderate . Thick Dense

. VN

Membership
Value
0]
0% 50% 100%
Percent of Coverage
Open Thin Moderate Thick Dense
X Y X Y X Y X Y X Y
0 1 10 0 25 0 60 0 80 0
10 1 25 1 50 1 75 1 90 1
20 0 40 0 75 0 90 0 100 1
Figure B-7: Fuzzy Sets on Terrain Vegetation
Zero Light Moderate Dense Impassable
1 l
Membership
Value
0
0] >5
Number of Obstacles On Route
Zero Light Moderate Dense Impassable
X Y X Y X Y X Y X Y
0 1 0 0 1 0 2 0 3 0
1 0 1 1 2 1 3 1 4 1
2 0 3 0 4 0 5 1

Figure B-8: Fuzzy Sets on Terrain Obstacles

99

Impassable Difficult . Moderate Easy

. W

Smooth

Membership
Value
0
0% 50% 100%
Percent Trafficability
Impassable Difficult Moderate Easy Smooth
X Y X Y X Y X Y X Y
1 0 25 0 60 0 80 0
20 0 20 1 50 1 75 1 90 1
40 0 75 0 90 0 100 1
Figure B-9: Fuzzy Sets on Terrain Trafficability
Zero Problems Maybe Easy Outstanding
Membership
Value

0
0% 50% 100%
Percent Probability of Success (“Co Cdr’s Estimate™)
Zero Problems Maybe Easy Outstanding
X Y X Y X Y X Y X Y
0 1 0 0 40 0 50 0 75 0
10 0 25 1 50 1 70 1 90 i
50 0 60 0 90 0 100 1

Figure B-10: Fuzzy Sets on Success Prediction

100

APPENDIX C. MISSION PLANNER USER’S GUIDE

The following instructions assume that the Mission Planner is integrated with Mod-
SAF, Version 1.2. The instructions are intended to step the user through the mission plan-

ner interactive process, from selecting the company through mission assignment.

A. UNIT SELECTION/OPORD SELECTION

Select a company-sized ground unit from the Plan View Display. If the company has
not been created, then use the Unit Creation editor first, and create the company. The Unit
Operations editor will appear. It contains information on the status of the company, along
with its organization chart, and an execution matrix that shows the status of tasks assigned
to the company and its subordinate vehicles and platoons (Figure C-1).

Ensure that the company-level unit symbol at the top of the Unit Organization chart is
highlighted. If another vehicle or platoon within the company is highlighted, select the
company unit symbol at the top of the Unit Organization chart. If this is not done, the Op-
erations Order editor will not appear, and an error message will appear instead.

Select the “Operations Order” button with the mouse. This will cause the Unit Oper-

ations screen to disappear, and the Operations Order base editor to appear in its place.

B. OPERATIONS ORDER BASE EDITOR

The Operations Order base editor consists of four major areas: the editor control but-
tons, the Unit Organization chart, a set of pushbuttons for Paragraph selection, and Para-

graph Three -- Execution (Figure C-2).

1. Editor Control Buttons

These buttons allow the user to assign the operations order to the selected unit,
cancel] the operations order and return to the Unit Operations editor without action, or to

print the operations order to the ModSAF text window.

101

2. Unit Organization Chart
This currently is for information purposes only; no actions are associated with se-
lecting a subelement of the company. Future versions could include changing the task or-

ganization by allowing the insertion and deletion of other subelements in the company.

3. Paragraph Selections
The user can select Paragraphs One, Two, Four, and Five in this section. Each

of these pushbuttons opens an editor specific to that paragraph.

a. Paragraph One -- Situation
This editor allows input of data regarding the enemy and friendly situation.
This is a simplified model that asks for numbers of friendly and enemy combat systems,
and allows for the definition of the Battalion Area of Interest (Figure C-3). The friendly
and enemy combat systems numbers allow for determination of force ratios, while the area

of interest will be used to constrain the search space for the terrain reasoner.

b. Paragraph Two -- Mission
This editor allows the user to enter the battalion’s name and organization,
along with the overall mission (Figure C-4). The user may also define the number of min-
utes to wait before executing the mission. Finally, the user can enter a battalion-level start
point and end point. All of this provides background information to the reasoner to allow

it to determine the context in which it selects the tasks for the company to execute.

¢. Paragraph Four -- Service Support
Resupply points and initial states of supply are defined here (Figure C-5).
The use of the ammunition and fuel status allows the user to enter values in percentage of
supplies on hand. Resupply points and Administrative-Logistics Operations Center loca-

tions can also be defined here.

102

d. Paragraph Five -- Command and Signal
The company chain of command is defined here (Figure C-6). This will be
used by the Mission Selector/Evaluator to determine subunit assignments -- the highest in
the chain of command is assumed to be the most competent, and therefore will be assigned

the most difficult missions. The signal subparagraph is simply text input for now.

4. Paragraph Three -- Execution

This paragraph is essentially an execution matrix for one company. Therefore, it
can be viewed as the specific unit instruction for that company. It allows the user to enter
missions for a maximum of four phases. Four basic missions may be selected: Attack, De-
fend, Move (Road March), and Occupy Assembly Area. Three transitions are allowed:
Continue, On Order, and Control Measure. A fourth transition, Mission Complete, allows
the user to arbitrarily end the mission assignment at that task. This deselects all missions
after the Mission Complete transition.

Each of the missions and the Control Measure transition have their own editor.

This allows the user to enter the required data to execute the mission.

a. Attack
This editor requires the user to enter the objective, and the attack position

from which to assault the objective (Figure C-7). The axis of advance selection is optional.

b. Defend
This editor requires the input of the battle position to occupy, along with the
left, right, and engagement area target reference points (TRP) (Figure C-8). There are no

optional entries.

c. Move
This editor requires the input of the start point (SP) and the release point

(RP) (Figure C-9). The route selection is optional.

103

d. Occupy Assembly Area
This editor has one required input -- the center of mass location for the com-

pany’s assembly area location (Figure C-10).

e. Control Measure Transition
The Control Measure transition has its own editor, which allows the user to

select a control measure (such as a phase line) from the Plan View Display as the transition.

104

1031pH suonerddQ jup :1-) aansi

..H..mcovﬁu do Jum pPaYSIUY USTA PIUMSII 3 [[L4s JPI 03 WAl Ure SURIIIs)

¥ 21un 703 snieas fRener]

TSNS 3

i UOISSTIA] USISSY

.. =PIQ suogerndg
WoISST BUpUad WpH {73
UOISSTIAl pouBIssy WPy &

B

1S 99,5~ .Vwi Ammwovyﬁ\&w&mjg ﬁwwwmw.. S 59
%w\ . N Ml,// N >ﬁ0(%A mg\ N \
AN NG

gL
6L N : T —
oo_o/womwﬁ * Mkﬂ N A /l@o % KZ /
Y ~ - Lt N Y
99 473 Aﬂuv e ?nn\ﬂ///J/w_ni ii/G A ."mn

mmnmonwcﬁ ofopalld [eldads sIMOHH 90104 [800] sy moys soumesq de[y o[edg depy 9g

105

P

. -A
oY

A
\
o
60
a ﬁ Y
et 4 : Zoom: click middle to zoom in around point; click right to zoom out around point; click and drag middle to set screen area
7
Operations Order | [Para I: Situation ||: Peragraph 3: Execution
e k&ﬁ:... . _ Pare 2: Mission] Fhase | Transition Phase 2 Transition Phase 3 Transition Phase 4
; Camear Para 4 Semice § §~ o ditack < Cantinee ik <y Centinve o Aicack <p Continee & Adack
M P § Comman 6 5 N_ s Defend < Or Order s Defend < On Grder s Deferd <y On Order s Deferd

v Move < CordMewsure O Mawe < Caldlousire o Mave <y CalMleasire o Marve

v Ocedd o MisnCangidee | o OccAA < Misn Conglese | O Oce Ad <y M Cengolece | < Oce Ad

Generate an Operations Order for this Unit.

Unit Operadons Editor: Use execution mauix to assign commands, or choose a different unit from the map

(selecting an

itern to edit will be resumed when finished unit operations)

B T O e e R RO 7Y g

Figure C-2: Operations Order Base Editor

106

uonem)i§ -- auQ ydeigeaed :¢-) aIn3i g

(suopesade Jun PIYSIUG UL PAUMSI 3G [l J4P3 03 WIRY e Bumo3ss) feur 93 wro.p 3um JUIAP € 95004 J0 ‘SPURTRIOD US[SSe 03 XLIBWI UORNIDXS 38() JopH suoperadg iy,
"IN} ST 10J JBPIQ suoneiad(y ue ajerouan

SAPRRA AWIUT 00°222 SIPMIA LPU3LL] 60'0S
o0¢ _ _ o:jor _ _ 0
- .\ - - _, -
7y Ll LY ‘7 Y
! IR i DRDENEY ovwrsyay fweug § T ICL OV W SYaA fpusn § pio]
nduy dejaf JaJ 213 nduj dejA] JoJ 319Y YoID:
w LE R SYSA QD PRO00°E SAJI007C UL 00°¥T
Loy unumﬁtsch 1oy s ymog o o |z o |z 0
H IVN0YD [UR: ¢ 1 22[0Y)) [DUR]: - /.. - .//Ib. - -
jindur dey] Ja7 93} 3P ncuy dey Jog S YOI 7, T _ \ .a: "y) _al

o7y eusmwctcz, a7y 352 \Swmtcz o)y sya g a3y Mundwoy wrsy Jf fundwory wrsuny uonne

B3Te UIIIDS 335 01 J[PPIN wa% pue 1e auwed punoxe no ureoz 01 B PN Esn PUNOIe U] WIB0Z 03 PPN YOI “Wo0Z Vﬁ

AN L 95 EEcUmwa %S TSN 09
il P ? .
) »
o Vi / ¢ AN N
8IFy B 8/
% A ,

4/ = \AV,
X . DOA[H0 AN SN = He— ey
613 e | N EZ 3 64
-\ll 7 : y o, ;r::f.f,//ld\\,w/ o "
2 0007011 SN § \552
0%rqX 9 AN G P bG M/ ris 065204

sdoang [eieds sImOHH edI0f[ed0] sy moys soameog defy aqeos depy

o

107

gy

§ File MapScale MapFeatures Show As

Local Force

HHours

Special Privilege

20:03:24

:

U,

et ///
N —

///
78NN

AN /Wo/} L /d 5

Parent Unit Name musﬁ Mission mxugc: Time Battalion Start Point
S j,mm-ao AR/Berlin Bde - \/ “Attack < Defend /\ Now {Click Here for Map input |
&) i< Move < Halt <> On Order ‘Cancel Choice]
 Later Battalion End Point

Minutes to Execution : Click Here for g% Input |
LR I Cancel Choice " _

. -

o - — 0
80.00 Minutes

S

. Generate an Operations Order for this Unit.
nit Operations Editor: Use execution matrix to assign commands, or choose a different unit from the maj

(selecting an item to edit will be resumed when finished unit operations)

Figure C-4: Paragraph Two -- Mission

108

110ddng 901A19Q -- anoq ydeigeaed :g-) aansiy

(suoperado Jun PAYSIUY U PIUMSSI 3G [[iA AP3 01 W] e Bupoaas)

few 93 WO JUM JUIIGTP © 3500UD JO ‘SPUBIUOD UB[SS? 03 XLNeul UORNIIXA Is[) ~XoipH suonexadg wur|

“JIUp) STYY 10} J3pIQ) suonersd(ue sjeiousn

B 00°00T
Q.Bm g0
l\ a..
‘7 L Y
i 30lOYA EUR): ¢ | | 3910y [33Ue Puvyy uo jong
UORRIMWUIy 00001
Q.ﬁm 00
| ID1OYD [ouwe i - -
: ” ~ auogy
|andur defy Jo3 319y WD Cp Y SRR SO
FERAAI Q
UOTPIO] SMPIJAF PUDE] uo ouruly ﬁo&.—-u. axnatg
TG N 0G

24

6L

—
A AN

=
NN (LT AU

ool [eredg

SIOHH opeos depy

2010 [800 SV MOYS saimes] dejy

109

272 Y XN

. <r;
97 72 S

N
RSN V) 52 R 5 /w\wo)/ \\mmj

Zoom: click middle to zoom in around point; click right to zoom out around point; click and drag middle to set screen area

‘ommand & Signa

Done _

. ,Oova_.Q Commander

Chain of Command Signal
Third Plt Leader
First Plt Leader

| [Curent CEOI in Effect. w
Second Plt Leader e R . et e £

,_‘ oiﬂ e E .\.
Ezecudve Officer
Fousrth Pit Leader

|

Generate an Operations Order for this Unit.

nit Operadons Editor: Use execution matrix to assign commands, or choose a different unit from the ma) {selecting an item to edjt will be resumed when finished unit operations)

Figure C-6: Paragraph Five -- Command and Signal

110

10)IPH UOISSTIA] Y9N :L-D dan31g

(suonerado Jxm pIYSUY USY A PIUMSIIT 2 [AP 03 WA} Ue Bunaapes) ToUI 313 Wo.g UM JUI AP & 9500 JO *SPUBMIWIOD US[SSE 03 XLGBUI UORNISXS 5] Joxpg suopersd yurf
“JIU[Y ST 10J I9PIQ suonead() ue Aeidusn ;

I 32704 [3oUe); W
hnduf depy 107319 xuams :
sounapy fo soeyy :amﬂ..haaw ‘pony 243> eme

B312 U33IDS 13 01 PPt SeJp pue Yoio Suied punore In0 wooz 01 WBEL ¥o Jujod punore Ul Wooz 0] S[PPI oIR (K007

s —a \) NaUNTTEN

>~ R //,//,,a o) -
| .vﬁwfsi 4 N N sl

Dod rd
IagFoh]

b,

~
SINOHH

b6 £
9010 [8007]

oBorianyy [eredg

111

TSR AN

/f\/f / uu“/ \9\.0,9 5 5b

" p»
97 . /\\\\N/ﬂ»\,/
A

S
RN EN R GERN b4k
Zoom: click middle to zoom in around point; click right to zoom out around point; click and drag middle to set screen area
Battle Position Left TRP Right TRP Engagement Area TRP

- Click Here for Map Input}| i ‘Click Here for Map _%E: Ornr Here for Map _sm:.ﬁ_ ¢ Click Here for Map Input | _

i~

Generate an Operations Order for this Unit.
Unit Operations Editor: Use execution matrix to assign commands, or choose a different unit from the ma) (selecting an item to edit will be resumed when finished unit operations)

Figure C-8: Defend Mission Editor

112

J0)IPH UOISSIIAl (YOXBIA] Peoy]) dAOIN :6-)) 2In3L

{suopesado 3um pays{y Usis PIUINSII g [Ap3 01 W=l we Sunoapas)

“3IU() ST} 10§ JOPIQ suoneId(ue eidusn

feur 21 W0 IM U TP € S500YD JO ‘SPUBLIIOD US[SSe 03 XLARW UOANDIIXA 3S[) J0upy suopesadQ urE

| 3300 PO}
H
|induy deyy 103919y Eelite) »

amoy nuog asuapay

©3Je U3ID$ 195 03 I[PPRK Sep pue YoRo “wed punole Ino wiooz 01 BU Y1 Jured pUnGIe U Wio0Z 01 S[PPII OO JWI007

~ay

\3
S £g F s TG
3 3

{
\ _ o]
N T L \TT NN\ (727/F

06

kXA

oSopalyy [eedg SINOHH 99104 [BOO] SV MOYS

soumea,] depy

spog de S[id

113

File MapScale Map Features

Show As Local Force

Privilege

HHours Special

- ‘Click Here for Map _%E) __

-y /2 A NN L - Ty 20 W R N RS '3 2 (A A
RTINS aﬂ %w
7 ~ N
s ./ ////:(. \/ O -
L SNIA b £ / N
nwy o~ OEJDO ~ A TEJF
// 1 - & ‘ N,
N cmm CA 2
~. / It ——]
N / / \ /. u — H
WL TS \ v
o / y /) ..:.x.xxx N -
50 51 2 24! /.\Hmm ./mm mw { oJ
NooB click middle to zoom in around point; click right to zoom out around peint; click Ea drag middle to set screen area
5@% Area Location

-

Pnit Operations Editor: Use execution matrix to assign commands, or choose a different unit from the ma)

Generate an Operations Order for this Unit.

(selecting an jtem to edit will be resumed when finished unit operations)

Figure C-10: Assembly Area Mission Editor

114

APPENDIX D. MISSION PLANNER PROGRAMMER’S GUIDE

This appendix provides information on using the functions associated with the
mission planner. The library name in ModSAF is “LibOpord,” and all future references
will use this name. The structure of this appendix mirrors that of the references for the other

ModSAF libraries, to ensure compatibility with ModSAF programming in general.

A. OVERVIEW

LibOpord provides a graphical user interface to a mission planner for company-level
ground units. It also provides the framework about which artificial intelligence modules
for mission planning may be inserted to provide a means of non-real time planning
capabilities at the company level.

LibOpord is closely linked to one library in ModSAF -- LibUnits. The initialization
routines and callback functions are all contained within this library. LibOpord is called
from the LibUnits Unit Operations editor. Upon completion of its tasks, it returns to the

Unit Operations editor.

B. USAGE

The software library “libopord.a” should be built and installed in the directory “/
common/lib.” You will also need the header file “libopord.h” which should be installed in
the directory “/common/include/libinc/.” If these files are not installed, then you need to
do a “gmake” in the LibOpord source directory. See the ModSAF Software Architecture

Design and Overview Document for additional information [LORAa93].

C. FUNCTIONS

The following are public functions and their description, along with the meaning of

the arguments, and the meaning of the return values (if any).

5. opord_init

extern void opord_init ()

This function is currently a no-op. It was intended as an initialization routine for
the libopord library, to allocate memory to the various data structures, but this is done

within the following function, opord_create_editor.

6. opord_create_editor

extern OPORD_EDITOR_PTR
opord_create_editor (data_path, reader_flags,
gui, tactmap, tcc,
map_erase_gc, sensitive,
refresh_event, db, select,
exit_fcn, exit_arg)

char *data_path;
int32 reader_flags;
SGUI_PTR gui;
TACTMAP_PTR tactmap;
COORD_TCC_PTR tcc;

GC map_erase_dgc;
SNSTVE_WINDOW_PTR sensitive;
CALLBACK_EVENT_PTR refresh_event;
PO_DATABASE *db;
SELECT_TOOL_PTR select;
OPORD_EXIT FUNCTION exit_fcn;
ADDRESS exit_arg;

data_path specifies the directory where the data files are expected.

reader_flags specifies flags to be passed to reader_read when reading data
files.

gui specifies the SAF GUIL

pvd specifies the PVD.

tactmap specifies the tactical map.

tee specifies the map coordinate system

map_erase_gc specifies the GC (graphics context) which can erase things from
the tactical map.

sensitive specifies the sensitive window for the tactical map.

refresh_event specifies the event which fires when the map is refreshed.

116

db specifies the persistent object database.

select specifies the select tool.

exit_fen specifies the operations order exit function that is called when the
operations order editor is exited. This should be defined in the library that initializes this
function. In this case, libunits initializes libopord, and the exit function is
“units_ops_resumed”, which allows the Unit Operations editor to be displayed.

exit_arg specifies the arguments to be passed with the exit function. In this case,
the pointer to the libunits editor data structure is passed back to resume the unit operations
order editor.

“opord_create_editor” creates the operations order editors. The data files are
read either from ‘.’ or the specified data path, depending upon the reader flags. The reader
flags are the same as in reader_read. The return value is a pointer to the operations order
editor structure, which contains the information required to generate and maintain the
editors and their associated data. Additionally, this function initializes the “LibTaskUtil”

library to allow for assignment of tasks without showing their associated editors.

7. opord_set_unit
extern void opord_set_unit(opord_gui, unit)

OPORD_EDITOR_PTR opord_gui;
ObjectID *unit;

opord_gui specifies the operations order editor structures.

unit specifies the persistent object identification of the unit.

This function sets the unit identification to the selected unit from the Unit
Operations editor. The user has clicked the mouse on a unit on the PVD, which has brought
up the Unit Operations Editor specifying this unit. This value is passed to the Operations

Order editor to keep track of to which unit this operations order applies.

117

8. opord_state

extern void opord_state(opord _gui, mode, state)

OPORD_EDITOR_PTR opord_gui;
SGUI_MODE_PTR mode;
SGUI_MODE_STATE state;

This function sets the state of the operations order editor. This is equivalent in
functionality to edt_state(), but is needed here because the base operations order editor is

not controlled by libeditor.

118

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library

Code 052

Naval Postgraduate School
Monterey, CA 93943-5101

Chairman Ted Lewis, Code CS/Lt
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943-5000

Professor David R. Pratt, Code CS/Pr
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943-5000

Professor Michael J. Zyda, Code CS/Zk
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943-5000

Professor Robert McGhee, Code CS/Mz
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943-5000

Dr. Andy Ceranowicz
Loral ADS

50 Moulton Street
Cambridge, MA 02138

Dr. S. H. Kwak

Loral ADS

50 Moulton Street
Cambridge, MA 02138

STRICOM

ATTN: Mr. Stan Goodman
12350 Research Parkway
Orlando, FL 32826-3276

119

10.

Major Howard L. Mohn
Bad Aibling Station
CMR 407, Box 827
APO AE 09098

120

